
No. 1 i-Technology Magazine in the World

PLUS...

VIEWPOINT: ENTERPRISE JAVA MADE EASY PAGE 6

Java Application Security
in the Corporate Word

Coexisting in the

Java Universe
Kicking the Tires
on Java 5.0

WWW.SYS-CON.COM/JDJ VOL.10 ISSUE:6

RETAILERS PLEASE DISPLAY
UNTIL JULY 31, 2005

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

ECLIPSE 3.1
PAGE 30

WHAT’S NEW IN

3June 2005www.SYS-CON.com/JDJ

echnology birthdays come and go,
but Internet technologies, by their
very nature, aren’t old enough to
allow yet for centenaries, or even

diamond anniversaries. So it is fascinat-
ing to see how people are reacting to the
fact that popular technologies like Java,
ColdFusion, and Flash have now finally
reached – or are about to reach - the ripe
old age of 10.
 Java was “born” on May 23, 1995. But
people forget that RealAudio, too, which
allowed us to hear across the Net in real
time, dates back to 1995. It was also the
year that traditional online dial-up sys-
tems like CompuServe, America Online,
and Prodigy first began to provide Inter-
net access, and the year that Netscape
went public with what was at the time
the third largest ever IPO share
value on the NASDAQ.
 In 1995, The Vatican
came online for the
first time (http://www.
vatican.va/) as did
the government of
Canada (http://canada.
gc.ca/). The first official
Internet wiretap was
successful in helping
the Secret Service and
Drug Enforcement Agency
(DEA) apprehend three individuals who
were illegally manufacturing and sell-
ing cellphone cloning equipment and
electronic devices, and Chris Lamprecht
(a.k.a. “Minor Threat”) became the first
person ever banned from accessing the
Internet – by a U.S. District Court judge
in Texas.
 So when May 23 came this year it was
a time for reflecting not just on Java’s
birth; it was a time for remembering oth-
er aspects of its first 10 years too, such
the closing keynote at JavaOne in 1999
by Douglas Adams of Hitchhiker’s Guide
to the Galaxy fame – who as JDJ’s Calvin
Austin remembers in this issue “gave a
great perspective on things and not just
Java.”
 As Ajit Sagar says in his editorial this
month, “A lot has happened since the
language that was trademarked with

dancing Dukes made its appearance
into the world of computing. In its cur-
rent incarnation, the Java platform is
undoubtedly the backbone of distrib-
uted enterprise applications in today’s
IT.” But future possibilities abound. For
example, as JBoss’s Marc Fleury – whom
we are delighted to say has also written
for this month’s issue – asks: “Why don’t
we take the underlying concept of EJB
3.0 and apply it to simplify other Java
middleware products?”
 It is the energies of Java pioneers like
Fleury, outside of Sun, that will charac-
terize the next 10 years of Java, just as
those of James Gosling, Tim Lindholm
and company, within Sun, have helped
shape the first 10 years.
 May 23 was marked in relatively low-

key fashion by Sun, though there
was a symbolic birthday cake

with 10 candles, which
stood in front of the
inevitable life-size Duke
in a ceremony presided
over on the Sun campus
by Gosling and Sun’s
president and COO,
Jonathan Schwartz.
 Duke was originally

designed by Sun’s Joe
Palrang, who was doing

artwork for the UI, and Gosling has
explained Duke’s appearance – the big
hands, the pointed head – as not only
representing the personality of Java but
also having precise functionality: “We
wanted something that could show up
on the screen in a relatively small area
and yet still be recognizable and com-
prehensible, something you could put a
lot of emotion and gestural activity into,
and still be about the size of a postage
stamp.”
 There will be a much more public cel-
ebration at JavaOne; those of you pick-
ing up this issue of JDJ at the show will
experience this for yourselves. Mean-
time, keep an eye out and see what kind
of hijinks will be devised to celebrate the
upcoming 10th birthdays, respectively, of
ColdFusion (“born” July 1995, just two
months after Java) and Flash (1996).

From the Group Publisher

From JavaOne
to JavaTen

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Associate Editor: Seta Papazian
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Calvin Austin, David Bismut, Ed Burnette,
Peter Braswell, Yakov Fain, Marc Fleury,

Jeremy Geelan, Mike Jacobs, Philippe Lalande,
Murali Kaundinya, Adam Kolawa, Kenneth D. Kruszka,

Swaminathan Natarajan, Krishnakumar Pooloth,
Ajit Sagar, Venkat, Joe Winchester

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2005 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Dorothy Gil, dorothy@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

T

5June 2005www.SYS-CON.com/JDJ

JUNE 2005 VOLUME:10 ISSUE:6

contents
JDJ Cover Story

54

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

From JavaOne to JavaTen
by Jeremy Geelan.................................3

VIEWPOINT

Enterprise Java Made Easy
by Marc Fleury.................................6

JAVA ENTERPRISE VIEWPOINT

On the Tenth Year of Java
My Client Asked of Me...
by Ajit Sagar.................................8

TECHNIQUES

Shouldn’t J2EE Be More Like Java?
Building a better bean
by Kenneth D. Kruszka.................................10

FRAMEWORK

Properties Editor Framework
Solving the problem of managing
application properties
by Swaminathan Natarajan, David Bismut, and

Krishnakumar Pooloth.................................48

LABS

MKS Integrity Suite 2005
Reviewed by Michael Sayko.................................64

LABS

Jtest
by Parasoft
Reviewed by Venkat.................................68

JSR WATCH

OSS: The Market Landscape
Why the OSS industry can – for the fi rst time ever
– produce open, implementable,
and certifi able standards
by Philippe Lalande.................................72

JVM

Isolating Concurrent Java Apps
in a Virtual Machine
Peaceful coexistence
by Murali Kaundinya.................................22

Q&A

Coexisting in the Java Universe
An interview with Anthony Scotney
Interviewed by Jeremy Geelan.................................26

CORE AND INTERNALS VIEWPOINT

JavaOne from the Inside Out
by Calvin Austin.................................38

DESKTOP JAVA VIEWPOINT

The Return of the Client
by Joe Winchester.................................46

by Mike Jacobs

Star Trek
Technology for Java3D Java Application Security

in the Corporate World
by Adam Kolawa and Yakov Fain

18

Building a particle system for Java3D

What’s New in Eclipse 3.1
by Ed Burnette

30

Kicking the Tires on Java 5.0
by Peter Braswell

40

www.SYS-CON.com/JDJ6 June 2005

implicity is the key driving force
behind the success of Java. When
Dr. Gosling invented the Java
language in 1995, the goal was to

make life easier for software developers.
Java’s elegant language design, simple API,
and vendor-independence have made it
the platform of choice for many develop-
ers. However, as Java evolves to address
enterprise needs for scalability and flex-
ibility, developer friendliness has taken
a back seat. The complex programming
model in EJB 2.1 and J2EE 1.4 has hindered
Java’s adoption, and it’s the root cause for
many slow-performing and error-prone
Java applications.
 Fortunately, help is on the way. The
upcoming EJB 3.0 and J2EE 1.5 servers
greatly simplify enterprise Java develop-
ment without compromising scalability
and flexibility. Unlike many
other third-party commercial
and open source J2EE alterna-
tives, EJB 3.0 is completely
standard-based. There is no
vendor lock-in. In fact, I think
EJB 3.0 is probably the most
significant invention in J2EE’s
history. EJB 3.0 simplifies ap-
plication development in the
following three key areas:
1. EJB 3.0 eliminates the need for excessive

and redundant XML-based deployment
descriptors. Instead, the bulk of con-
figuration options are specified within
the source code as Java annotations.
The XML deployment descriptors are
still available as an optional choice for
administrators who need to override
default configuration values at deploy-
ment time.

2. EJB 3.0 simplifies Object/Relational
Mapping (ORM) via a new entity bean
model. Java developers only need to
work with plain old Java objects (POJOs)
and build the domain data model, fol-
lowing sound object-oriented design
principals. The mapping between object
hierarchy and relational table schemas
is transparently handled by the EJB 3.0
server. The EJB 3.0 server also manages
database connections, enforces transac-
tion rules, generates database-specific

SQL statements, and detects updates to
mapped POJOs in the application.

3. EJB 3.0 enables new application archi-
tectures based on the Dependency
Injection design pattern. Resources
and services can be declaratively wired
into the application via annotations or
XML configuration files. That allows
developers to build loosely coupled
applications.

 The JBoss Application Server 4.0.3 is
the first J2EE application server to sup-
port EJB 3.0. While JBoss EJB 3.0 is still
in the beta stage, we know some of our
customers are already using it success-
fully in their production environments.
But why stop at EJB 3.0? Why don’t we
take the underlying concept of EJB 3.0
and apply it to simplify other Java middle-

ware products? That is exactly
the direction we are moving
toward at JBoss. In the near
future, we aim to support the
EJB 3.0-style programming
model (i.e., annotations, POJO
services, and dependency in-
jection) throughout our JEMS
(Java Enterprise Middleware
System) product suite, includ-

ing JMX, JMS, JSF, jBMP, JBoss Cache,
and JBoss Portal. Other Java middleware
vendors will like to follow suit and sup-
port the EJB 3.0 programming model in
their products. Furthermore, the JBoss
Eclipse IDE 1.5 integrates EJB 3.0 specific
wizards, annotation-aware smart editors,
Hibernate code generation tools, and
JBoss server management tools, all in one
Eclipse-based open source IDE package.

 The result of all this is a simpler and
more robust J2EE. The ultimate winners,
of course, are Java developers like yourself.
If you are interested in learning more
about EJB 3.0, please come to our JavaOne
sessions led by experts such as Bill Burke,
Gavin King, Tom Baeyens, Michael Yuan,
and Stan Silvert. If you can’t make it to
JavaOne, you can see much of our EJB 3.0
related content and demos on our Web site
at www.jboss.com/javaone05. Hope to see
y’all there!

Viewpoint

Marc Fleury

Enterprise Java
Made Easy

S

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:
 Miles Silverman miles@sys-con.com

Advertising Sales Director:
 Robyn Forma robyn@sys-con.com

National Sales and Marketing Manager:
 Dennis Leavey dennis@sys-con.com

Advertising Sales Managers:
 Megan Mussa megan@sys-con.com

Associate Sales Managers:
 Dorothy Gil dorothy@sys-con.com
 Kim Hughes kim@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:
 Seta Papazian seta@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com

Lead Designer:
 Tami Lima tami@sys-con.com

Art Director:
 Alex Botero alex@sys-con.com

Associate Art Directors:
 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Video Production :
 Frank Moricco frank@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:
 Stephen Kilmurray stephen@sys-con.com
 Percy Yip percy@sys-con.com
 Vincent Santaiti vincent@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:
 Betty White betty@sys-con.com

Accounts Receivable:
 Gail Naples gailn@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com

National Sales Manager:
 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

Marc Fleury, PhD, is the founder

and CEO of JBoss Inc., the

company behind Professional

Open Source products such

as JBoss Application Server,

Hibernate, JBoss Portal, JBoss

Cache, and JBoss Eclipse IDE. He

started the JBoss.org project in

1999 and co-founded JBoss Inc. in

2002. Dr. Fleury holds a degree in

physics from Ecole Polytechnique,

a masters in theoretical physics

from ENS ULM and a PhD in

physics from Ecole Polytechnique

for work he did as a visiting

scientist at MIT’s RLE.

marc.fleury@jboss.org

���������
�����������
����������
����������������

������������������������������������ ��������������������

���
���

���
��

��������� ������������� ��
��
���
���
���
���

���������
�����������
����������
����������������

������������������������������������ ��������������������

���
���

���
��

��������� ������������� ��
��
���
���
���
���

www.SYS-CON.com/JDJ8 June 2005

f we consider JavaOne as the event
when Java was born, then June
27–30, 2005, will mark its tenth
birthweek. A lot has happened since

the language that was trademarked
with dancing dukes made its appear-
ance into the world of computing. In its
current incarnation, the Java platform is
undoubtedly the backbone of distributed
enterprise applications in today’s IT.
 At Infosys, I’ve come across several
projects in which the Java platform was
being adopted, upgraded, integrated with
existing technologies, or replaced with
an alternate technology. The choices are
influenced by business drivers that push
enterprise applications toward the next
generation platform, which can service
more customers with a host of new fea-
tures that were not available earlier due to
technical limitations or poor design. Here
are the main trends that I’ve seen at our
client bases.

1. Distribute My Apps
 This is obviously the main reason for
enterprises to adopt the Java platform.
Enterprises want to move toward an
n-tier model, decoupling their UI and
data source from the business logic and
enabling scalable deployment. The trends
we have seen here are the migration of
applications from mainframes or two-tier
applications such as PowerBuilder to an
open platform – Java/J2EE.

2. Orient My Services
 SOA is one of the hottest buzzwords in
the industry. The promise of bridging the
gap between technology and business is
what makes service-oriented architecture
such an attractive proposition. Java is a
natural fit for enabling service orientation
of existing applications. Several enterprises
are considering the move toward a service-
oriented architecture and looking at the
features of the Java platform as the enabler.

3. Service-Enable My Web
 SOA is often confused with Web servic-
es, which are basically the most feasible
(but not the only) choice for implement-

ing an SOA. However, as the obvious
technology of choice for service-enabling
applications, many clients are looking at
adopting/enhancing their Java applica-
tions to expose business functionality
via Web services. Java WSDP, Apache’s
WSIF, and feature sets provided by several
vendors make these initiatives feasible.

4. Orchestrate My Processes
 We’ve had discussions with several cli-
ents on the merits of adopting BPM and
workflow. The market for BPM, discount-
ing Microsoft’s BizTalk, is made up of
players from different origins, who have
wrapped their offerings under the BPM
umbrella. The base for all these vendors
is the J2EE platform. In this case, clients
usually have a messaging and Java base
that they want to enhance with process
orchestration. There are many initiatives
that are driven by the new compliance
rules such as those under Sarbanes-Oxley.

5. Migrate My App Server
 Enterprises already deployed on a
J2EE application server are looking at
upgrading/migrating/replacing their
application servers. The drivers include
obsolescence, acquisitions, and cost. If
you are at JavaOne and are interested
in this particular trend, please attend
my presentation on Wednesday at 8:00
p.m. – BOF 9042: Who Moved My J2EE
Platform, which discusses app server
migrations. The details are at my blog:
http://www.ajitsagar.javadevelopersjour-
nal.com/read/1063063.htm.

6. Open My Source
 Cost and TCO have driven enterprises
to seriously consider the adoption of the
Java platform through the open source
community. While large enterprises are
still wary of betting their entire business
on open source Java products, compo-
nent and framework development within
these enterprises is definitely adopting
the open source route. In addition, the
majority of Java vendors are leveraging
open source as the base for their own
products.

7. Integrate My Messages
 A large fraction of clients that we ser-
vice have their applications built on some
messaging base. This is not typically JMS,
but a pre-JMS MOM product. Several
organizations are dealing with the design
issues of leveraging their existing messag-
ing infrastructure with a Java front end. At
the same time, they want to explore the
benefits of Enterprise Service Bus (ESB)
offerings from Java vendors.

8. Integrate My Enterprise
 EAI and portals – the back-end and
front-end integration of enterprise ap-
plications is a prevalent issue within large
enterprises with a variety of technologies.
The Java platform offers several features
such as the Portlet API (JSR 000168) and
JCA for EAI integration to enable applica-
tion integration.

9. Scale Back My EJBs
 A trend that is evident in several large
organizations is to scale back on the us-
age of EJBs. I don’t know of many clients
who are recommending entity beans for
application design. In fact, the directive is
usually to replace entity beans with
in-house persistence techniques, hi-
bernate, or JDO. Message-driven beans
(MDBs), however, are being leveraged
where appropriate.

10. And Take Me Back to the Mainframe
 This is one of the counter-intuitive
moves in some organizations. For num-
ber crunching and batch functionality,
many clients have realized that embrac-
ing Java for everything was overkill. In
many cases, the functionality is being
moved back to where it was, with the
distribution of the application being
mainly in the UI. Leveraging Web services
directly to integrate with legacy apps is
another trend.

 All in all, Java has come a long way in
the past 10 years. Enterprises have come
the full circle from wariness, to faith, to
trust, to an optimal utilization of what
the platform has to offer.

Java Enterprise Viewpoint

Ajit Sagar
Contributing Editor

On the Tenth Year of Java
My Client Asked of Me...

I

Ajit Sagar is a senior

technical architect with Infosys

Technologies, Ltd., a global

consulting and IT services

company. Ajit has been working

with Java since 1997, and has

more than 15 years experience

in the IT industry. During

this tenure, he has been a

programmer, lead architect,

director of engineering, and

product manager for companies

from 15 to 25,000 people in

size. Ajit has served as JDJ’s J2EE

editor, was the founding editor

of XML Journal, and has been a

frequent speaker at SYS-CON’s

Web Services Edge series of

conferences. He has published

more than 75 articles.

ajitsagar@sys-con.com

www.SYS-CON.com/JDJ10 June 2005

he elegance of Java stems from how
the language addresses a number of
highly complex software engineer-
ing issues in a seemingly consistent

and easy-to-use paradigm. While there
are a few potholes that you need to be
mindful of, most caused by the differences
between primitives and objects, the power
and reach of standard Java are testa-
ments to the principle of simplicity that is
embodied within it. Unfortunately, when
it comes to Java’s enterprise platform, J2EE
strays considerably from J2SE in a number
of areas, creating unnecessary additional
complexity and ambiguity. To make mat-
ters worse, J2EE 1.3 (EJB 2.0) introduced
self-inconsistencies.
 J2EE’s deviations fall into two catego-
ries: Structural and Behavioral. Structural
deviations concern those areas where the
implementation of a J2EE component
requires a format that differs signifi-
cantly from the implementation format
of a similar J2SE component. Behavioral
deviations concern those areas where
substantial inconsistencies exist in the
fundamental workings of J2EE, be they
self-inconsistencies in J2EE components
or inconsistencies with respect to analo-
gous J2SE components.
 In the case of J2EE’s most high-profile
technology, Enterprise JavaBeans (EJBs),
these digressions can be mitigated by ex-
tending and enhancing EJBs into what I’ll
term BetterEJBs (see the pullout at the end
of this article). Just as application server
deployment tools can transparently gen-
erate EJB stubs and skeletons, tools can
likewise be developed to auto-generate
the necessary artifacts that are derivable
from the BetterBean. The benefit: a Bet-
terEJB developer needs only implement a
single class, cutting down on development
time, complexity, and the potential for
errors while increasing understandability
through the consolidation of information
in a single location.
 This article discusses a number of
issues regarding the disparity between
J2EE and J2SE, and spells out practical ap-
proaches and techniques that can be used
to help return J2EE, specifically EJB, back
to its Java roots. Additionally, this article

illustrates the derivation of all supporting
artifacts from the BetterBean, suggest-
ing toolable functionality that could be
realized to auto-generate the boilerplate
constituent parts of the BetterEJB.

Structural Deviations
 J2EE, and specifically EJB, has com-
plicated the development of reusable
functionality. Besides compromising Java’s
object-oriented nature, the format of the
code has been made needlessly complex.
When a data value object or utility object
can be written in a single Java class, why
does J2EE require that four (or possibly
even six) files be written to make the
enterprise-grade equivalent: an Entity or
Session EJB? An EJB requires not only the
Bean class, but also a Home Interface,
a Remote Interface (optionally, a Local
Home Interface and Local Remote Inter-
face), and a deployment descriptor.
 Given the distributed nature of EJB
deployment, which is realized through ap-
plication server-generated Stubs and Skel-
etons, it’s reasonable for enterprise-grade
functionality to require a client-facing
interface in addition to the bean class. But,
the necessity of any additional artifacts is
overly complex and error prone.

Declarative Programming Gone Awry
 By far the most egregious deviation
is the EJB deployment descriptor. While
declarative programming, through the
use of runtime configuration files, is
useful for separating environment-de-
pendent information from hard-coded,
core-component functionality, EJB has
mistakenly taken declarative program-
ming too far. Is it not central to the
operation of a session bean whether it’s
stateful or stateless? It’s not fundamental
to the operation of a method whether or
not it uses a database transaction. Con-
sidering that details such as these are
integral to the functioning of the code,
they shouldn’t be alterable after compila-
tion; these details should be explicit in
the code and shouldn’t be tweaked in
deployment descriptors.
 The following code illustrates how the
designation of a BetterEJB as stateless or

stateful is accomplished through the use
of a marker interface in the definition of
the BetterBean class, BetterBeanA:

1 public class BetterBeanA

2 implements StatelessBetterBean

3 {

4 ...

5 public Boolean foo()

6 {

7 return Boolean.TRUE;

8 }

9 }

 Because BetterBeanA implements the
StatelessBetterBean marker interface,
the derived deployment descriptor is for
a <session> bean with <session-type>
of Stateless, as shown in the following
snippet:

1 <session>

2 <ejb-name>

3 BetterBeanA

4 </ejb-name>

5 <home>BetterHomeInterfaceA</home>

6 <remote>

7 BetterRemoteInterfaceA

8 </remote>

9 <local-home>

10 BetterLocalHomeInterfaceA

11 </local-home>

12 <local>

13 BetterRemoteInterfaceA

14 </local>

15 <ejb-class>BetterStubA</ejb-class>

16 <session-type>

17 Stateless

18 </session-type>

19 </session>

 The benefit of using marker interfaces
is that it becomes possible to do build/
compile-time checks on BetterBeanA,
which can help eliminate the possibil-
ity of difficult-to-find runtime bugs or
cryptic deployment-time errors.

Unnecessary Multitude of Interfaces
 Why do EJBs require both a HomeIn-
terface and a RemoteInterface (and
optionally a LocalHomeInterface and
LocalRemoteInterface)? Yes, the Ho-

Techniques

by Kenneth D. Kruszka

Shouldn’t J2EE Be More Like Java?

T

Ken Kruszka is a product

manager and architect who

has developed software

solutions for NASA,

US Department of Defense,

NIST, the telecommunications

industry, and the financial

services industry. Ken holds a

BS and MS in computer

science, and an MBA.

kdkruszka@yahoo.com

Building a better bean

www.SYS-CON.com/JDJ12 June 2005

Techniques

meInterface is used for locating the EJB
implementation, while the RemoteInter-
face is the interface that’s realized by the
EJB implementation.
 But, is it not possble for a single
interface to perform both functions?
Such a combination is achieved
by the BetterInterface, as is shown
by the interface for BetterBeanA,
BetterInterfaceA:

1 public interface BetterInterfaceA

2 {

3 public static final String[2]

4 JNDI_LOOKUP_REFS

5 = {“BetterBeanA/LocalHome”,

6 “BetterBeanA/Home”};

7 ...

8 public Boolean foo();

9 }

 In addition to providing client-side sig-
natures for all the methods implemented
by BetterBeanA, this interface holds refer-
ences for both remote EJB lookup and
local EJB lookup. Passing these references
to a lookup utility function (described
later in this article) allows for retrieving
either reference. In this way, only one
interface is needed for both the lookup of
and interaction with a BetterEJB.

Behavioral Deviations
 While structural deviations concern
the format of the artifacts associated with
EJBs, behavioral deviations concern the
fundamental workings of EJBs. Behavior
deviations arise from inconsistencies
that J2EE introduced either with respect
to analogous J2SE components or within
J2EE itself. They are often side effects
caused by the “Enterprise Services” that
application servers are required to pro-
vide, such as EJB location transparency.

EJBs Break Pass-By-Handle
 Java employs a parameter passing
mechanism for objects that has come to
be known as pass-by-handle. Technically,
Java obeys strict pass-by-value semantics,
which means that the value assigned to a
method parameter is a copy of the argu-
ment value. Paraphrasing Bruce Eckel’s
explanation in Thinking in Java: when
member fields of parameter objects are
modified within the called method, those
changes alter the argument object held
by the caller and persist after the called
method ends. The reason for this is that
object handles are passed-by-value when
making method calls, not the objects
themselves.
 However, EJB method invocations don’t
follow this established pass-by-handle
behavior. Instead, object arguments to re-
mote methods are deep-cloned, through
serialization. As a result, modifications to
parameter objects aren’t reflected in the
argument objects held by the caller.
 To further complicate matters, EJB
2.0 opened a rift in EJB behavior with
the introduction of Local interfaces. As
described on page 148 in Enterprise Java-
Beans (3rd edition) by Richard Monson-
Haefel, “The Local Client API also passes
object arguments by [handle] from one
bean to another…This means that an
object passed from enterprise bean A to
enterprise bean B is referenced by both
beans, so if B changes its values A will see
those changes.”

 To put it succinctly, pass-by-handle
semantics are in place when using Local
interfaces, but not Remote interfaces.
The advice given by Monson-Haefel
to ensure consistent behavior on EJB
method calls is to always pass immuta-
ble objects or copies of mutable objects
when making method calls on Local
EJBs [page 149]. But I respectfully submit
that this advice misses the mark entirely.
The problem is not that the parameter-
passing semantics of Local EJBs differ
from those of Remote EJBs, but that the
semantics of Remote EJB calls differ from
those of ordinary Java calls. We should
be seeking ways to make Remote EJBs
behave more like Local ones, not the
other way around.
 The BetterEJB addresses this discrep-
ancy by simulating the pass-by-handle
mechanism in EJB method calls; Better-
Stub and BetterSkeleton work together
to bridge the chasm of remote method
invocation through the revival of pass-
by-value-result semantics, which first
appeared in Algol W but are foreign to
most modern programming languages.
 Pass-by-value-result, as realized in the
code in Listing 1, works in the follow-
ing way: In the BetterStub method, the
parameter objects are incorporated into
a List that is passed as a single argument
to the remote method on the BetterSkel-
eton. The BetterSkeleton extracts the
objects from the List and passes them as
individual arguments to the BetterBean
method. The BetterBean may alter the
contents of the parameters thereby modi-
fying the objects held by the BetterSkel-
eton. On the return, the BetterSkeleton
adds the BetterBean return value to the
List and returns the full List back to the
BetterStub, which then reconciles its
local objects with the possibly modified
objects in the return list. In this way, the
client-side objects are updated with any
changes that were made on the remote
side of the EJB call.
 The benefit of this approach is that
BetterEJB method calls work in a man-
ner similar to ordinary Java method
calls; if parameter objects are modified,
those side effects are seen in the caller’s
version of the objects. The shortcoming
of this approach is that changes made
to parameter objects in the BetterBean
aren’t propagated instantaneously; the
caller’s version of the objects isn’t altered
until control is returned from the remote
method call.

Listing 1: Using Pass-by-value-return to simulate Pass-by-handle

/* BetterStub example
 * reconcile() implemented in base class
 */
 /* BetterBean example
 */

1 public class BetterStubB
2 extends BetterStubBase
3 {
4 public Boolean bar(Set set)
5 {
6 ArrayList values = new ArrayList();
7 List remoteValues;
8 values.add(set);
9 // lookup home and remote interface
10 ...
11 remoteValues = remoteB.callBar(
12 values);
13 Boolean result = (Boolean)
14 reconcile(
15 values, remoteValues);
16 return result;
17 }
18 }

/* BetterSkeleton example
 */
1 public class BetterSkeletonB
2 implements SessionBean,
3 BetterSkeleton
4 {
5 public List callBar(
6 ArrayList values)
7 {
8 Set param0 = (Set)values.get(0);
9 Object result;
10 BetterBeanB bean
11 = new BetterBeanB();
12
13 result = bean.bar(param0);
14 values.add(result);
15 return values;
16 }
17 }

1 public class BetterBeanB
2 extends BetterBeanBase
3 implements StatelessBetterBean
4 {
5 public Boolean bar(Set set)
6 {
7 set.add(“bar”);
8 return Boolean.TRUE;
9 }
10 }

Real-Time Data Analytics
With A Real-Fast Database.

Rapid Integration Platform
Makes Applications Perform Together.

Imagine being able to query a lightning-fast
operational database in real time.

Now you can, with our multidimensional database
for transaction processing and real-time analytics.

Only Caché combines robust objects and robust
SQL, thus eliminating object-relational mapping.
It requires little administration, delivers speed and
scalability on minimal hardware, and comes with a
rapid application development environment.

These innovations mean faster time-to-market,
lower cost of operations, and higher application
performance. We back these claims with this
money-back guarantee: Buy Caché for new
application development, and for up to one year you
can return your license for a full refund if you are
unhappy for any reason.*

Innovative database. Guaranteed performance.

Imagine being able to get your applications to
perform together as an ensemble. Easily.

Now you can, with our universal integration
platform.

Ensemble is the first fusion of an integration server,
data server, application server, and portal development
software – in a single, seamless product. This is the
complete ensemble of technologies needed for rapid
integration, fast development, and easy management.

These innovations mean all of your integration
projects will be completed on time and on budget,
with a simplified learning curve for your IT staff.
We back these claims with this money-back guarantee:
For up to one year after you purchase Ensemble, if you
are unhappy for any reason, we’ll refund 100% of your
license fee.*

Innovative integration. Guaranteed performance.

For a free copy of CACHÉ, or to request a free ENSEMBLE proof-of-concept project, visit www.InterSystems.com/Free8P

*Read about our money-back guarantees at the web page shown above.
© 2005 InterSystems Corporation. All rights reserved. InterSystems Caché and InterSystems Ensemble are trademarks of InterSystems Corporation. 5-05 ComboInno8JaDeJo

Real-Time Data Analytics
With A Real-Fast Database.

Rapid Integration Platform
Makes Applications Perform Together.

Imagine being able to query a lightning-fast
operational database in real time.

Now you can, with our multidimensional database
for transaction processing and real-time analytics.

Only Caché combines robust objects and robust
SQL, thus eliminating object-relational mapping.
It requires little administration, delivers speed and
scalability on minimal hardware, and comes with a
rapid application development environment.

These innovations mean faster time-to-market,
lower cost of operations, and higher application
performance. We back these claims with this
money-back guarantee: Buy Caché for new
application development, and for up to one year you
can return your license for a full refund if you are
unhappy for any reason.*

Innovative database. Guaranteed performance.

Imagine being able to get your applications to
perform together as an ensemble. Easily.

Now you can, with our universal integration
platform.

Ensemble is the first fusion of an integration server,
data server, application server, and portal development
software – in a single, seamless product. This is the
complete ensemble of technologies needed for rapid
integration, fast development, and easy management.

These innovations mean all of your integration
projects will be completed on time and on budget,
with a simplified learning curve for your IT staff.
We back these claims with this money-back guarantee:
For up to one year after you purchase Ensemble, if you
are unhappy for any reason, we’ll refund 100% of your
license fee.*

Innovative integration. Guaranteed performance.

For a free copy of CACHÉ, or to request a free ENSEMBLE proof-of-concept project, visit www.InterSystems.com/Free8P

*Read about our money-back guarantees at the web page shown above.
© 2005 InterSystems Corporation. All rights reserved. InterSystems Caché and InterSystems Ensemble are trademarks of InterSystems Corporation. 5-05 ComboInno8JaDeJo

www.SYS-CON.com/JDJ14 June 2005

 An alternate solution to this issue
would be to always pass EJB-wrapped
value objects as parameters. Then, the
value objects would be location-trans-
parent and there would only be a single
copy with which all clients interact.
However, the performance degrada-
tion of such an approach is prohibitive
due to the overhead associated with
the remote calls when accessing any
attributes on the value objects.

Local Interfaces Prevent Load Balancing
and Location Transparency
 EJB was a gigantic step forward for
Java. The introduction of EJB eased the
development of distributed applica-
tions in Java. And there was much
rejoicing, until developers discovered
the performance degradation that
came with the assumptions intrinsic
to EJB, especially those concerning

location transparency. In response to
these concerns, EJB 2.0 introduced
Local Interfaces, which allowed for calls
between collocated EJBs to sidestep the
network overhead inherent in remote
method calls.
 While the intention behind Local
Interfaces was laudable, the implemen-
tation effectively gutted core applica-
tion-server services, most notably load
balancing and location transparency,
and put the onus back onto applica-
tion developers. The introduction of
Local Interfaces forced developers to
program explicitly in their client code
through which interface they would
interact with the EJB: Local or Remote.
(Given the difference in the parameter-
passing semantics outlined above,
it’s probably a good thing that EJB 2.0
required developers to explicitly code
for this. But, I digress.)
 To restore centralized load balancing
and the notion of location transpar-
ency of EJBs, an intelligent EJB lookup
mechanism is needed, such as the one
shown in Listing 2.
 This is a simple greedy approach to
load balancing. If the local server isn’t
overtaxed, then use an EJB deployed to
this server, otherwise use a remote EJB.
Considering the overhead involved
with remote method calls, this is a
reasonable approach.
 The shortcoming of this approach
is the difficulty in developing load-
balancing heuristics. But the benefit of
this approach is that this functionality,
which restores services that should be
done by the application server, can be
removed from the purview of applica-
tion developers, and provided as a
centralized factory method. This lets
developers use any BetterEJB without
having to know where it is deployed,
and enables changes in deployment
architecture without requiring code
modifications.

EJB 3.0 to the Rescue?
 The promise of EJB 3.0 is to simplify
EJB development dramatically, and the
EJB 3.0 expert group has taken giant
strides toward that goal. Among the im-
provements in EJB 3.0 (many of which
are beyond the scope of this article) is
the elimination of Home interfaces,
reducing the number of artifacts that
must be created by developers. Further-
more, EJB 3.0 leverages annotations as

a way to provide declarative metadata
interspersed in class code, thereby
eliminating the need for separate de-
ployment descriptors.
 However, EJB 3.0 doesn’t go far
enough. While some structural devia-
tions are lessened, they aren’t complete-
ly resolved. The use of annotations
does mitigate the need for deployment
descriptors, but annotations are still a
form of declarative programming. In
many cases this declarative program-
ming paradigm is unnecessary; instead
of annotations, simple marker interfaces
would work just as well. Worse still, EJB
3.0 fails to address behavioral deviations
at all.

Conclusion
 J2EE is supposed to be an enterprise
extension of Java. As such J2EE should
behave like J2SE, but in a distributed
environment, without requiring un-
necessary additional effort on the part
of developers. Applications deployed in
a distributed environment need to take
into account a number of key architec-
tural issues including: failover, location
transparency, and load balancing. Aren’t
these some of the reasons why we’re
buying application servers? The applica-
tion servers should take care of such
issues for us; J2EE should mandate that
such issues be taken care of for us. But,
this isn’t the case now. Until the J2EE
expert groups bridge the gap back to
Java, both structurally and behaviorally,
the only solution we have as application
developers and architects is to address
these issues ourselves. (See The Better
EJB sidebar on page 18).

Resources
• Burke, B. “EJB 3.0 Preview. Part 1:

The basic programming model.”
http://www.sys-con.com/story/
?storyid=46975&DE=1

• Burke, B. “EJB 3.0 Preview.
The advanced features Part 2.”
http://www.sys-con.com/story/
?storyid=47351&DE=1

• Eckel, B. (1998). Thinking in Java.
Prentice Hall PTR.

• Gamma, E., et. al. (1995). Design
Patterns. Addison-Wesley.

• Monson-Haefel, R. (2001). Enterprise
Java Beans. Third Edition. O’Reilly.

• Proulx, E. “EJB Inheritance.” http://
www.onjava.com/pub/a/onja-
va/2002/11/13/ejbinherit3.html

Techniques

Listing 2: Load-balanced BetterEJB lookup

/* BetterEJB lookup utility snippet
 */
1 private static final Class[]
2 NO_PARAMETER_TYPES = new Class[0];
3
4 private static final Object[]
5 NO_PARAMETER_OBJECTS = new Object[0];
6
7 public BetterInterface
8 lookupBetterEJB(
9 Context jndiContext,
10 String[] ejbRefs)
11 throws Exception
12 {
13 EJBLocalHome ejbLocalHome;
14 EJBHome ejbHome;
15 BetterRemote betterRemote;
16 Class ejbClass;
17 Method createMethod;
18 BetterStub stub;
19
20 if (serverLoadIsLow())
21 {
22 ejbLocalHome
23 = (EJBLocalHome)context.lookup(
24 ejbRef[0]); // local ref
25 ejbClass = ejbLocalHome.getClass();
26 createMethod
27 = ejbClass.getMethod(
28 “create”,
29 NO_PARAMETER_TYPES);
30 betterRemote = (BetterRemote)
31 createMethod.invoke(
32 ejbLocalHome,
33 NO_PARAMETER_OBJECTS);
34 }
35
36 if (betterRemote == null)
37 {
38 ejbHome
39 = (EJBHome)context.lookup(
40 ejbRef[1]); // remote ref
41 ejbClass = ejbHome.getClass();
42 createMethod = ejbClass.getMethod(
43 “create”,
44 NO_PARAMETER_TYPES);
45 betterRemote = (BetterRemote)
46 createMethod.invoke(
47 ejbHome,
48 NO_PARAMETER_OBJECTS);
49 }
50 stub = betterRemote.getBetterStub();
51 return stub;
52 }

����������������������
��

���

��

��

���

���

��

���

�

�
��

��
��

�
��
��

��
��
��

��
�
��

��
��
��
��

���
��
��

��
��
��

��
��

�
��
�
��
��

��
��
��
��
��
���
��

��
��
��

��
��

��
��
�
�
��
��

��
��

�
��
�
��
�
��
�
�
��
�
��
�
�
��

��
�
�
��

�
�
��

�
�
��

�
��
��
��

�
�
��

�
��

��
�
�
��
�
��

��
��
��

��
�
��

�
��
��

��
�
�

��
��

��
��
��
��
���
��
��

�
��
��
��
���

��
��

��
��
��
��

�
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

���
��

��
��
��
�

����������������������
��

���

��

��

���

���

��

���

�

�
��

��
��

�
��
��

��
��
��

��
�
��

��
��
��
��

���
��
��

��
��
��

��
��

�
��
�
��
��

��
��
��
��
��
���
��

��
��
��

��
��

��
��
�
�
��
��

��
��

�
��
�
��
�
��
�
�
��
�
��
�
�
��

��
�
�
��

�
�
��

�
�
��

�
��
��
��

�
�
��

�
��

��
�
�
��
�
��

��
��
��

��
�
��

�
��
��

��
�
�

��
��

��
��
��
��
���
��
��

�
��
��
��
���

��
��

��
��
��
��

�
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

���
��

��
��
��
�

www.SYS-CON.com/JDJ16 June 2005

Techniques

 The architecture diagram illustrates how BetterEJB components (rectangles) leverage ordinary EJB components (ovals/circles). Just as application

servers auto-generate service-providing classes (blue) from developer created classes and interfaces (white), so too can tools auto-generate code (red) from the

developer created BetterBean (light red) to provide the higher-level services of BetterEJB.

• BetterInterface is a single interface for the Better EJB. No more fooling around with the Home, Remote, Local Home, Local Remote interfaces.

• BetterStub implements BetterInterface and lives on the client side of the call, working together with BetterSkeleton to provide the enhanced services of

BetterEJB.

• BetterSkeleton lives on the middle tier side of the call, working together with BetterStub to provide the enhanced services of BetterEJB. Acts as a proxy to

the BetterBean.

• BetterBean implements either StatelessBetterBean or StatefulBetterBean and contains the logic of the BetterEJB.

 The heart of the BetterEJB is the BetterBean class, which is an ordinary Java class, allowing for true object-oriented development. Like the EJB stub and

skeleton, BetterStub and BetterSkeleton work together to handle the bookkeeping required for remote method invocation. It’s this additional bookkeeping

that helps bring J2EE back home to Java.

The Better EJB

BetterEJB Architecture

+ lookupBetterEJB(String[] references) : BetterInterface

BetterEJBUtility

+ << implement >> baz(Object param) : Object

SampleBetterStub + baz(Object param) : Object

SampleBetterBean

+ callBaz(List params) : List
+ << implement >> getBetterStub () : BetterStub

SampleBetterSkeleton

+ <<implement>> getBetterStub () : BetterStub

BetterBeanBase
 {abstract}

<<interface>>
java.io.Serializable

<<interface>>
BetterInterface

<<interface>>
BetterStub

<<interface>>
BetterRemote

<<interface>>
BetterSkeleton

<<interface>>
BetterBean

BetterStubBase
 {abstract}

<<interface>>
BetterStubObtainer

+ getBetterStub() : BetterStub

<<interface>>
SampleBetterHome

<<interface>>
SampleBetterRemote

+ baz(List param) : List

<<interface>>
javaxejb.SessionBean <<interface>>

StatelessBetterBeanBean
<<interface>>

StatefulBetterBeanBean

<<interface>>
SampleBetterInterface

+ JNDI_LOOKUP_REFS : String[]
+ baz(Object param) : Object

+ reconcile(List localValues, List remoteValues) : Object

Sample BetterEJB Class Diagram

���

������������������������������������
������������������������������

��������������
�������� �� �������� ���������� ��������� ����� �� �����
���
�������� ��� ������ ����� ���� ������� ��� ��� ��������� �����
���������� ���� �������� ����������� ���� ���������
���������������������������������

�������� ��� ������ ���������������� ����� ���� ���� ������
��
������������� ����� ���������� ������� ������� �����������
���
�����������������������������

����� ���� �������� ��� ������ ��� ���������� ���� �������
���������� �������� ��� �� �������� ��� ���� ���� ����������
���������� ����� ���������� ���� ��������� �����������
�������� ����� ������������ ���� �������������� ������� ���
��������� ��������� ������ ��� ���������� �������� �����������
���

���
��
��
���� ���������� ����������� ���� ������� �������� ��������
��
���������������������

���� ���� ��������� ���� ����� ����� ��� ���� �������� ��������
��
���������������������������������������

��
���

���

������
�������
��

��������

���

������������������������������������
������������������������������

��������������
�������� �� �������� ���������� ��������� ����� �� �����
���
�������� ��� ������ ����� ���� ������� ��� ��� ��������� �����
���������� ���� �������� ����������� ���� ���������
���������������������������������

�������� ��� ������ ���������������� ����� ���� ���� ������
��
������������� ����� ���������� ������� ������� �����������
���
�����������������������������

����� ���� �������� ��� ������ ��� ���������� ���� �������
���������� �������� ��� �� �������� ��� ���� ���� ����������
���������� ����� ���������� ���� ��������� �����������
�������� ����� ������������ ���� �������������� ������� ���
��������� ��������� ������ ��� ���������� �������� �����������
���

���
��
��
���� ���������� ����������� ���� ������� �������� ��������
��
���������������������

���� ���� ��������� ���� ����� ����� ��� ���� �������� ��������
��
���������������������������������������

��
���

���

������
�������
��

��������

www.SYS-CON.com/JDJ18 June 2005

 The vast majority of corporate developers truly believe that

application security is not their concern, assuming that

network and engineering groups will build their environment

in a secure way. But what about application security? Are you

ready for the code audit?

Application Security Isn’t Getting the Attention It Deserves
 When most people in the corporate world talk about “secu-
rity,” they mean the security of the network, operating system,
and servers. Organizations that want to protect their systems
against hacker attacks invest a lot of time, effort, and money
ensuring that these three components are secure. Without this
secure foundation, systems cannot operate securely.
 However, even if the network, server, and operating
system are 100% secure, vulnerabilities in the application
itself make a system just as prone to dangerous attacks
as unprotected networks, operating systems, and servers
would. In fact, if an application has security vulnerabilities,
it can allow an attacker to access privileged data, delete
critical data, and even break into the system and operate
at the same priority level as the application, which is es-
sentially giving the attacker the power to destroy the entire
system. Consequently, the security of the application is even
more important than the security of the system on which it’s
running. Building an insecure application on top of a secure
network, OS, and server is akin to building an elaborate
fortress, but leaving the main entryway wide open and
unguarded.
 There is a simple explanation to why this happens: tight
project deadlines and unawareness of potential consequenc-
es. Project managers believe that answering that annoying
review of the corporate security group takes care of every-
thing. Not every project is reviewed by experienced enter-
prise architects, and even if it is, Java security is not one of the
major skills of Java architects.

Most Developers Don’t Know How To Write Secure Code
 Most developers have no idea what writing secure code
involves. Most have never thought about writing secure code

- probably in response to the corporate world virtually ignor-
ing application security, and very few have ever had to try
writing secure code. Some developers have heard that buffer
overfl ows and SQL injections can cause security problems,
but that’s about the extent of most developers’ security
knowledge.
 When developers are asked to make applications secure,
they start trying to fi nd security bugs in the application
— after it’s been built. For example, they might look for
dangerous method calls and remove them, using an appli-
cation vulnerability scanner, or using a security mecha-
nism such as mod_security or an application fi rewall to
prevent exploitation. However, this bug-fi nding strategy
isn’t suffi cient to meet today’s complex security require-
ments, such as those mandated by the Sarbanes-Oxley Act
. Testing problems out of the application is both ineffi cient
and largely ineffective. Independent, end-of-process bug
fi nding alone can’t and on’t expose all possible security
vulnerabilities.
 With penetration testing, which involves trying to mimic
an attacker’s actions and checking if any tested scenarios
result in security breaches, security vulnerabilities will go
unnoticed unless the tester has the skill and luck to design
the precise attack scenarios required to expose them.
Considering that there are thousands, if not millions, of pos-
sible scenarios for even a basic application, odds are some
vulnerabilities will be overlooked. However, it takes only
one security vulnerability to compromise the security of
an application and its related systems — opening the door
to attacks, as well as fi nes for not complying with security
mandates.
 Furthermore, penetration testing can fail to catch the
most dangerous types of problems. Let’s assume that you
have a Web application to test, and this application has a
backdoor that gives admin privileges to anyone who knows
to supply a secret argument, like h4x0rzRgr8 = true. A typi-
cal penetration test against a Web application uses known
exploits and sends modifi ed requests to exploit common
coding problems. It would take years for this test to fi nd
this kind of vulnerability through penetration testing. Even
an expert security analyst would have a tough time trying
to exploit this. What about a diffi cult-to-reach section of
code in the error-handling routine that performs an unsafe

Dr. Adam Kolawa is cofounder

and CEO of Parasoft, a leading

provider of Automated Error

Prevention software solutions.

Dr. Kolawa, co-author of

Bulletproofi ng Web
Applications (Hungry Minds,

2001), has contributed to and

written over 100 commentary

pieces and technical articles

for publications such as The
Wall Street Journal, and IEEE

Computer. He has also authored

numerous scientifi c papers on

physics and parallel processing.

His recent media engagements

include CNN, CNBC, the BBC,

and NPR. Dr. Kolawa holds

a PhD in theoretical physics

from the California Institute

of Technology, and has been

granted 10 patents for his recent

inventions. He is a well-known

writer and speaker on industry

issues and in 2001 was awarded

the Los Angeles Ernst & Young

Entrepreneur of the Year Award

in the software category.

ak@parasoft.com

by Adam Kolawa and Yakov Fainby Adam Kolawa and Yakov Fain

Java Application Security
 Corporate World

Java security isn’t a skill of Java architects

Feature

 Corporate Worldin
the

19June 2005www.SYS-CON.com/JDJ

database query? Or the lack of an effective audit trail for
monitoring security functions? These kinds of problems
are often entirely overlooked by even a diligent penetration
test.
 Other popular end-of-process security testing tech-
niques - such as using static analysis to check whether
code follows a standard set of security rules such as “Do
not use java.util.Random” or “Use java.security.SecureRan-
dom” - might expose some of the vulnerabilities that pen-
etration testing overlooks, but come with their own share
of problems. For instance, consider some of the weak-
nesses of trying to identify security vulnerabilities through
static analysis. One is that these patterns don’t consider
the nuances of actual operation; they don’t factor in busi-
ness rules, or general security principles. If you have a Web
application that lets your customer see their competitor’s
account by adding one to the session ID, this is a very seri-
ous problem. However, this kind of problem escapes static
analysis because it doesn’t involve a dangerous function
call. Security assessment, in this sense, isn’t always a bug
to find, but a design problem to verify. Another problem is
false positives. Static analysis can’t actually exploit vulner-
abilities; it can only report potential problems. Conse-
quently, the developer or tester must review every reported
error and then determine if it indicates a true problem, or
a false positive. Sophisticated static analysis methods can
improve accuracy, but ultimately, a significant amount of
time and resources must be spent reviewing and investi-
gating reported problems and determining which actually
need to be corrected.

Complying with Sarbanes-Oxley
 To comply with Sarbanes-Oxley (SOX), public companies
need to effectively define and verify security policies for their
financial and record-keeping applications
 Public companies are now required by SOX to implement
and verify effective security for their financial and record-
keeping applications. To comply with this requirement, it’s
necessary to establish an effective application security policy
and verify that the policy is actually implemented in the
code and reflected in the system functionality. By security
policy we mean a document that defines best practice secure
coding standards, secure application design rules, security
testing benchmarks, privacy requirements, as well as custom
security requirements.
 According to SOX, having a security policy has evolved
from a “nice-to-have” feature to an essential business re-
quirement. Companies that don’t establish and implement
effective security policies could now be found to be negligent
and face significant fines for failing to comply with SOX. A lot
of developers and managers still treat security like they treat
quality — they try to get as much quality/security as they
can to the best of their knowledge, but often settle short of
complete quality/security. However, systems that aren’t 100%
secure aren’t acceptable under SOX. If development manag-
ers don’t recognize this, they could cause their companies
tremendous liabilities .
 Defining a security policy doesn’t satisfy SOX require-
ments; the specification items defined in the policy must
actually be implemented in the code. In other words, the
specification must truly be seen as requirements — not as
suggestions or guidelines, as is typically the case with func-
tionality specifications. The specifications defined in Table 1 Sample Security Policy Enforcement

Use JAAS in a single, The following code is not allowed:
centralized authentication
mechanism. Instead of doing class ISOGenericServlet extends Servlet {
 access control checking in void doPost(HttpServletRequest req,
 each servlet or JSP, use a HttpServletResponse resp) {
“front-door” servlet to do the lc.login();
access control checking. }

 JAAS Authentication cannot take place outside of the
 ISOAuthentication.

 The following code must be implemented:

 class ISOAuthentication {

 void authenticate(String user, String pass) throw

 LoginException {

 //do authentication

 }

 }

 This code is called every time a JAAS authorization operation takes place

Do not cause deadlocks by The following code is not allowed:
calling a “synchronized” public synchronized void method1() {
method from a “synchronized” method2();
method. }

Avoid potential deadlock public synchronized void method2() {
conditions that can cause }
denial of service.
 Synchronized methods that call other synchronized methods are dead
 lock prone. Try to write the code so that a thread doesn’t try to get
 a lock on a monitor while already holding a lock. One possibility is
 to use a “synchronized” statement to only synchronize the part of
 the method that really needs to be synchronized. Alternatively, before
 locking a second object, ensure that it is not already locked.

Use only strong cryptographic The following code is not allowed:
algorithms.
 Cipher.getInstance(“MD5”);

Some encryption algorithms Do not use cryptographic algorithms that have known problems
are not as strong and therefore that defeat the effectiveness of the cryptography.
not as secure as others. It is
recommended that the The following code shows the correct behavior:
strongest practical
cryptography be used and Cipher.getInstance(“SHA-1”);
 weak cryptographic
algorithms avoided Only use strong cryptographic algorithms.

Validate ‘HttpServletRequest’ The following code is not allowed:
object when extracting data
from it. String name = req.getParameter(“name”);

 Unvalidated user data could be passed on to sensitive methods.
HttpServletRequest objects
contain user-modifiable data SQL Injection occurs when user input (for example, from
that, if left unvalidated and HttpServleetRequest) is appended to a SQL query and passed
passed to sensitive methods, to a database without being properly validated. An attacker
could cause serious security can exploit this vulnerability to access and modify privileged data
problems such as SQL injection and execute arbitrary commands. Cross-site scripting problems
and cross-site scripting (XSS). occur when user-modifiable data is output verbatim to HTML.
 Subsequently, an attacker can submit script tags with malicious code
 that is then executed on the client browser. This allows an attacker to
 deface a site, steal credentials of legitimate users, and gain access to
 private data.

Session tokens should expire. The following code shows the correct behavior:

 long sessionAge = System.getCurrentTimeMillis() - session.

 getCreationTime();

 if (sessionAge > maxAge) {

 session.invalidate();

 }

www.SYS-CON.com/JDJ20 June 2005

the security policy must be implemented…no ifs, ands,
or buts. If your corporate information group doesn’t have
resources to enforce this, your architecture group may have
to take this responsibility.
 What’s required to ensure that the security policy is
implemented in the code? First, code should be statically
analyzed to enforce the organization’s security policy on
the client and server sides. Static analysis typically looks
for potentially dangerous function call patterns and tries to
infer if they represent security vulnerabilities (for instance,
to determine if code has unvalidated inputs, and if unvali-
dated inputs are passed to specific functions that can be
vulnerable to attack).
 Next, thorough automated penetration testing should
be done to confirm that the security policy has been imple-
mented correctly and operates properly. In addition, security
should be verified through unit testing, runtime error detec-
tion, and SQL monitoring.
 Just scanning the code for known security bug patterns
and performing some penetration testing isn’t enough. You
need to have a security policy that defines how the code
should be built to safeguard security, as well as how the code
should be tested to verify that the required security was
implemented.

Security Policy
 What does a security policy involve? First, you define how
the code needs to be written so that it isn’t vulnerable to at-
tack. This policy should be designed to prevent both types of
possible security bugs: bugs in the code that cause security
mechanisms to malfunction, and security mechanisms that
aren’t implemented correctly. The first case tends to be a
problem when critical security tasks such as input validation
or authentication are handled differently in different parts of
the code. Not only is this bad for maintainability, it’s bad for
security because it introduces more attack surfaces where
vulnerabilities can hide.
 When implemented, all security-related operations
specified in the security policy should be concentrated
in one segment of the application. You can then focus your
resources on verifying and maintaining the security of that
one critical module. This centralized security policy acts
like a drawbridge for a castle: it isolates the area attack-
ers can exploit and allows for a more focused defensive
strategy.
 Table 1 shows excerpts from a security policy for a Java-
based application.

Outsourcing and Security
 Application security is one of multiple issues that out-
sourcing brings to the corporate table. For example, can you
allow developers in other countries to have access to such
sensitive information as social security numbers and bank

account numbers? In developing countries the chances of
such information being stolen are higher. This introduces
the additional expense of creating separate environments for
such teams (installing separate database and J2EE servers,
and deploying data-scrambling software).
 If you are outsourcing support of you applications, have
you arranged for auditing the administrator’s actions? If a user
has been granted access to particular screens or specific data,
do you have a record of who did it and when?
 In some cases companies even outsource the process of
running penetration tests.

Summary
 The main goal of this article was to bring your attention
to potential issues and security holes in your applications.
Set and enforce security policies in your organization and
consider doing penetration tests and static analysis of Java
code using automated software testing tools.

Feature

 Sarbanes-Oxley Act was signed into law by President Bush in July of 2002. It

requires public companies to improve the accuracy and reliability of corporate

reports and disclosures to prevent and punish corporate fraud. It has provisions

for auditor independence and corporate responsibilities and sets stringent stan-

dards for corporate executives. This act was named after Senator Paul Sarbanes

and Representative Michael G. Oxley.

 One section of the law says that financial reports must be accurate and

have to be certified by a company’s top executives on a quarterly basis. From

an IT point-of-view, this not only means that the software that produces such

reports must be accurate, but also that it must be secure enough to prevent

attempts to modify reports during or after their creation.

Another section forces corporations to set effective internal control for report-

ing. Among other inspections, independent auditors can check if the applica-

tion software keeps track of the deletion or modification of sensitive data.

 This law requires that changes in the financial state of a corporation must

be made available to the public in a timely manner. For IT this means that the

infrastructure must include disaster recovery sites and data replication proce-

dures that ensure the availability of such information to the public even if the

primary data center is down.

 For more details you can refer to the document “IT Control Objectives for

Sarbanes-Oxley” published online by the IT Governance Institute.

 As you can guess, corporate executives don’t really like this law. They

now need to spend a substantial part of their revenues on complying with the

Sarbanes-Oxley Act.

 They also need to pay more attention to the software quality and security

or else they may face punishments anywhere from losing their job to jail

sentences. They also have to think twice before saying “I do” to their partner

outsourcers from overseas.

 From the IT perspective, this law generates more jobs and new projects,

especially in compliance departments. This act may not be as big as the Y2K

hype, but it will definitely bring more people to the IT industry.

Sarbanes-Oxley and Information Technology

Application security is one of multiple issues that
outsourcing brings to the corporate table”“

Yakov Fain is a Java 2

Enthusiast and Educator from

Wall Street. He is the author of

the best selling book, The Java
Tutorial for the Real World, an

e-book Java Programming for

Kids, Parents and Grandparents.

Fain also authored several

chapters for Java 2 Enterprise
Edition 1.4 Bible. On Sundays

Yakov teaches Java (see www.

smartdataprocessing.com)

yakovfain@sys-con.com

www.SYS-CON.com/JDJ22 June 2005

t’s not at all uncommon to see a
server machine or even a desktop
machine that runs the same or
multiple applications each with

its own Java Runtime Environment. In
the server environment, aside from the
scaling issues with garbage collection,
the real motivation was for different ap-
plications to not be adversely affected by
sharing application data and state within
the same JVM. However, launching and
running multiple processes, even on a
server, comes with a price.
 JVM researchers have long investigated
the possibility of running multiple appli-
cations concurrently on the same VM and
yet have sufficient degree of isolation to
not step on each other’s toes. Java Isolates
(JSR-121) is a JCP effort to come up with a
standard set of APIs that when imple-
mented in the platform can someday
provide the degree of isolation between
applications that could run concurrently
and coexist on the same physical JVM.

Introduction
 About four years ago, a large client had
experienced a sporadic outage with their
application that was running on a J2EE
server. There were multiple applica-
tions deployed on the same server, each
having their own URL. The code review
within these applications did not reveal
anything untoward and they did not
load any native libraries. The application
server in question did have a significant
amount of native code. We investigated
the possibilities by which an application
can become unstable. Our efforts to re-
produce the problem were largely unsuc-
cessful. We found some useful literature
that stressed the importance of doing
static analysis of native code, allow-
ing/disallowing signal handling routines
between native code and the underlying
OS, the potential for collisions, etc. Since
the native code was loaded by the appli-
cation server and not by the application,
there was very little we could do in terms

of analyzing and monitoring the suspect
code. Such debugging experiences are
not uncommon and they emphasize the
importance of isolating applications and
their native libraries from each other.
That begs an understanding on how
the J2EE platform provides for isolation
between multiple concurrent applica-
tions. A J2EE server uses the classloader
mechanism to provide isolation between
these enterprise applications and it has
its limitations, which we’ll discuss later.
A J2EE server virtualizes the underlying
resources to an application similar to an
operating system. It makes it possible to
share JDBC connections between appli-
cations and some application servers al-
low the creation of connection pools per
application. It provides life-cycle services
to components and applications but
doesn’t have a way to stop threads safely.
It doesn’t have the means to control CPU
or to renegotiate memory, storage, etc. As
a consequence of these limitations and
from the fear of contention between co-
located applications (discussed earlier),
enterprises rely on the protection offered
by the operating system. They deploy a
single application on a single application
server instance even on highly scalable
SMP servers. They add more J2EE server
instances for running different applica-
tions, resulting in overheads that take
more system resources. This approach
requires a separate administrative server
to manage the server instances and that
adds to the overheads further. This is not
optimal and there has been a pressing
need for applications to safely co-exist
within the same J2EE server.

What Is Wrong with Classloaders?
 Classloaders make it possible to
load multiple instances of the same
class. It’s possible to modify the search
mechanism for class files within the
JVM. Classloaders act like a namespace
whereby the classes loaded by a particu-
lar classloader are tagged to provide a

unique identity. With classloaders, it’s
also possible to dynamically modify the
bytecodes just prior to their loading by
performing certain transformations.
An application can be unloaded by
discarding its classloader. However, a
classloader can only be discarded if the
reference count for all the classes loaded
by this classloader becomes zero and
the garbage collector deems them as
unreachable. Classloader share basic
classes; this can be exploited to change
the shared data, thus making the other
classloader and its applications vulner-
able. The security model is debatable at
best. Here’s an example: if there exists a
utility class that’s used by an application
and that application is distributed across
two separate classloaders, replicat-
ing the utility class in both of these
classloaders is obviously expensive. It’s
certainly possible to create a hierarchy
of classloaders and having the parent
classloader load the utility class, thus
allowing the two classloaders to share
code. Isolation provided by classloaders
is weak because objects can leak and
be captured. This approach therefore is
incomplete and error-prone.

Isolates
 Isolates are Java APIs that provide a
uniform mechanism for managing Java
applications that are isolated from each
other, but can potentially share underly-
ing implementation resources. Each ap-
plication is given the illusion of running
in its own isolated virtual machine and
they each have their own system proper-
ties, classpath, static class state, etc. There
are two primary motivations behind
this. One is to prevent the faults within
an application from propagating to
other applications. The other is to ensure
that an isolate can be terminated. The
primary platform targeted has been J2SE,
although nothing within the API inhibits
adoption in any platform. There has
been a strong case for adoption within

JVM

by Murali Kaundinya

Isolating Concurrent Java Apps
in a Virtual Machine

I
Peaceful coexistence

Murali Kaundinya is a chief

architect within the Enterprise

Web Services – Application

US Sub-practice at Sun

Microsystems, Inc. Murali is

interested in service-driven

development and service-

oriented-architectures. He is

currently involved in building a

reference Architecture for SOA.

He is a Java Ambassador and is

also an active member of Sun’s

Customer Engineering Technical

Council. Murali is a frequent

speaker at major Java and SOA

conferences.

murali.kaundinya@sun.com

23June 2005www.SYS-CON.com/JDJ

the J2ME. The specification is currently
under public review. As an API, it doesn’t
influence the implementation too much.
Isolates provides a means of deploying
new Java implementation features that
enable and enhance scalability while
providing an alternative to ad hoc control
schemes. A conformant implementation
of the API must guarantee at least isola-
tion of Java state (i.e., logically disjoint
heap spaces, per application mutable
static fields, etc). Java applications that
span across virtual machine instances
can be wrapped with the Isolation API
by adding only a few mechanisms for
control. It’s also possible to have imple-
mentations of Java isolation that provide
high degrees of class, bytecode, and
native code sharing within the same VM
or between multiple VMs. The specific
features of the chosen implementation
will be discernable via a combination of
vendor-specific and standard command-
line arguments and properties.

Isolates’ Architecture
 The Architecture for Isolates is shown
in Figure 1. An Isolate is a class and is
part of the Isolate API. Isolates have
their own security manager, applica-
tion classpath, and disjoint heap. They
share the statics of all of the classes with
AWT. Isolates cannot share any objects
between them. An Isolate has a halt ()
method that unlike the Thread.stop ()
method causes all the threads within
the Isolate to stop and keep the state
consistent. It’s still recommended that
this approach be pursued after attempts
to shut down an Isolate have failed. An
Isolate can communicate with another
Isolate through a new mechanism called
a Link, which is a class that is part of the
Isolate API. A Link allows I/O objects
such as files, and sockets to be passed
between Isolates. RMI can just as well be
used and in most cases may be prefer-
able to Link. Thus each Isolate acts as a
separate logical virtual machine. An Ag-
gregate is a logical group of Isolates that
share the runtime executable bytecodes
and the class representation of all the
classes within. An aggregate can contain
one or many Isolates; however, it’s not
a class. Aggregates generally share state
that is managed or owned by the operat-
ing system. State such as the “current
working directory”, the hostname, the
user ID who launched the JVM, etc., are
outside the JVM and are considered to be
state at the aggregator level. Isolates can
use all forms of external communication
including RMI and RMI-over-IIOP.

Implementation Styles
 As most Java APIs, the Isolate APIs
don’t dictate a whole lot on the imple-
mentation. Naturally, there are multiple
ways to implement these APIs. One form
of implementation would be to have an
Isolate on its own OS process. This would
be no different than existing applica-
tions except that they would be wrapped
within an Isolate. The sharing with other
Isolates would occur via interprocess
communication mechanisms such as
shared memory, message passing, and
sockets. Class representations, byte-
codes, compiled code, immutable statics,
and other internal data structures can
be shared in this fashion. The reference
implementation of JSR-121 follows this
style. Imagine having a single Isolate in
Figure 1 – that would be a good example
of this style of implementation. Another
form of implementation would be to
have all Isolates within one OS address
space or a process. In this style, the Iso-
lates still get their own versions of all the
statics and global definitions including
AWT thread and shutdown hooks. The
Multi-tasking Virtual Machine and the
Janos VM implement this style. Figure 1
is a good illustration of this style. A third
form of implementation is to have Iso-
lates scheduled to run on multiple JVMs.
SAP follows this implementation style.
Another style would be to have a LAN
cluster of JVMs and have Isolates run on
different hosts but all sharing a common
administrative domain.

Isolates’s API
 It might be useful to get an apprecia-
tion for some of the design goals before
jumping into the core of the Isolates
API. The goals of this JSR have been
to keep the APIs minimal and small.
Such a goal can only be fulfilled if the
semantics are precise and simple. The

APIs stress the mechanism but are not
intrusive to dictate implementation
styles and policy. As in all new Java APIs
backward compatibility is an important
requirement. This implies that there
should be no changes to the code prior
to JSR 121. The JSR Expert Group has
also taken care to ensure that they allow
multiple mapping strategies to different
platforms. The Java docs for the Isolates
API are shown in Figure 2. The JSR is still
under development and therefore these
might still undergo some changes. For
the most part, the APIs are quite stable.
 The API consists of the Isolate class,
which can be thought of as a handle to
an isolated computation. It has a few
constructors, one of which takes the
IsolateParameters class as an argument.
The IsolateParameters class wraps the
command-line parameters to indicate
the style of implementation and other
runtime properties. Isolate object in-
stantiation corresponds to preparation
of an isolated computation (an applica-
tion). The Isolate class has methods for
starting, suspending, resuming, and
terminating the isolated computation
at present, as well as methods for deter-
mining state, waiting for termination,
and determining familiar relationships
of computations. The other main class
defined by this JSR is the Link abstract
class, which can be thought of as a bidi-
rectional pipe between two Isolates. The
Link class has a method to create a link
with a sender and a receiver and a meth-
od to close the link. It also has methods
to send, receive, and check if the link is
open, and utility methods to check if an
Isolate is a sender or a receiver. Most of
the classes including Isolate and Link
implement a marker interface called
Message. There are various classes that
implement the Message interface such
as CompositeMessage, DataMessage,

 Figure 1 Aggregates vs Isolates vs Threads

www.SYS-CON.com/JDJ24 June 2005

and StatusMessage. ByteBufferMessage,
ChannelMessage, FileMessage, and
SocketMessage implement IOMessage,
which extends the Message interface.
They all provide the abstractions as
indicated by their individual prefixes.
 Isolate operations that alter state make
security checks that can throw security
exceptions. The IsolateStartException
class is a wrapper for the regular Excep-
tion. Isolate objects to access existing
computations can be obtained through
a static lookup method using identifiers
that are unique within the platform’s
domain (e.g., a computer, a cluster, etc.).

Examples
 Let’s take a look at a few examples:

void runProgram(String classname, String[]

args) {

 try {

 Isolate I = new Isolate(classname,

args);

 i.start() ;

 }

 catch (SecurityException se) {..}

 catch (IsolateStartException ise) {..}

 catch (Exception exc) {..}

}

 As described in the code snippet,
creating an Isolate and running a
computation within an Isolate is
not very different from running
an application today (without
Isolates). If there is a class called
MyApp, accessible in the default
application class-path, passing
the string “MyApp” to the runPro-
gram method would run the “My-
App” within an Isolate. As discussed
previously, each Isolate has its own
application classpath and this can
be modified just prior to creating
and running an Isolate as shown
below:

TransientPreferences tp = new

TransientPreferences();

tp.put(“java.properties/java.class.path”,

class path”);

try {

 Isolate myIsolate = new Isolate(“MyApp”,

null, tp, null);

 myIsolate.start();

}

 catch (SecurityException se) {..}

 catch (IsolateStartException ise) {..}

 catch (Exception exc) {..}

}

 The following code snippet shows
a J2ME application wherein a parent
and a child Isolate communicate with
each other using a Link.

Class Runner {

 Link data;

 Isolate child;

 CompositeMessage getMessage() { return

data.receive(); }

 StatusMessage runStarlet(String mCls,

String[] mArgs,

 String[] sec

/*,...*/) {

 IsolateParameters context = new

 IsolateParameters(mCls, mArgs);

 context.setContext(

 “jsr121.exp.java.properties.java.

security.manager”,

 sec);

 child = new Isolate(context);

 data = Link.newLink(child, Isolate.cur-

rentIsolate());

 StatusLink s = child.newStatusLink();

 child.start(new Link[] { data });

 return s.receive();

 }

}

Summary
 We have seen that Isolates (JSR
121) provide a mechanism to launch
multiple applications and a natural
consequence of this is that the Java
environment is not dependent on the
shell scripts of the operating system. In
a way, they become platform neu-
tral. This is also good from a security
perspective as the launching code can
be inspected and verified for its type
safety and potential for buffer overflow.
Whenever they become part of the
platform, Isolates can avoid launching
multiple JREs and this can improve
the scalability of the platform. As each
Isolate runs almost like a logical virtual
machine, it’s conceivable to start and
spawn Isolates depending on the load
of the application, the resources on the
host machine, and more. JSR 121 has
completed its Public Review and the
Executive Committee for SE/EE has
approved the JSR Review Ballot for JSR
121. This article does not imply product
plans or any such commitments to the
Java platform whatsoever.

Acknowledgments
 I would like to thank Pete Soper for
providing a great deal of insight on JSR
121 and for clarifying many of the ques-
tions on the specification. I also thank
Ali Syed for reviewing the initial draft of
this article and providing feedback.

References
• Application Isolation in the

Java(tm) Virtual Machine, Grzegorz
Czajkowski, ACM OOPSLA’00,
Minneapolis, MN, October 2000.

• Automated and Portable Native Code
Isolation, Czajkowski, G., Daynes, L.,
and Wolczko, M., Sun Microsystems
Laboratories Technical Report 01-96,
April 2001.

• Experience with Secure Multi-
Processing in Java, Dirk Balfanz,
Li Gong, IEEE Proceedings of
ICDSC’98, Amsterdam, The
Netherlands, May 1998.

• Building a Java virtual machine
for server applications: The Jvm
on OS/390 Dillenberger et al IBM
Systems Journal (Java Performance
issue), Volume 39, No. 1, 2000.

• http://www.bitser.net/isolate-inter-
est/papers/bryce-05.04.pdf

• http://www.jcp.org/en/jsr/
detail?id=121

JVM

 Figure 2 Java docs

www.SYS-CON.com/JDJ26 June 2005

nthony Scotney is a science
graduate of the University of
Tasmania with majors in com-
puter science and information

systems. After graduating he established
JadeLiquid Software Pty Ltd. to develop
software tools that would enhance the
Java programming language. JadeLiquid
Software has received several awards
and grants in recognition of its success
including Tasmanian Export Award
Finalist 2003 and 2004 and awarded the
2004 Microsoft Emerging ICT Business
Award. Anthony himself was awarded
the prestigious 2004 Pearcey Award for
innovative and pioneering achieve-
ment and contributions to research and
development in information technol-
ogy. He also was named 2005 Tasmanian
Young Achiever of the year.
 JadeLiquid Software Pty Ltd. is a lead-
ing provider of Java rendering compo-
nents for enterprise applications and
Web Services. WebRenderer can connect
a client application to server business
logic without changing server code or
infrastructure. WebRenderer is the only
standards-compliant Java Web content
rendering component available com-
mercially. JadeLiquid has a client base
spanning the globe with deployments in
North America, Europe, and Asia.

QThanks for agreeing to talk with
JDJ. Let’s cut right to the chase. Per-

haps you would start by unpacking the
concept of a “wrapper library” itself,
and then follow that general definition
by situating WebRenderer in the overall
Java browser space.
 The challenge for Java rich-cli-
ent applications is to display the rich
Web content in a meaningful way.
Java doesn’t have a standards-compli-
ant Web content rendering engine
built into the J2SE SDK. This poses
a challenge for Java developers. Java
rich-client application developers were
traditionally forced to use the default

browser on the system external to their
rich-client application to display rich
Web content in a standards-compliant
and reliable manner. WebRenderer ad-
dresses this limitation by providing an
embeddable standards-compliant Web
content rendering engine.
 The concept behind WebRenderer
was to build a Java browser component
without reinventing the wheel. So we
went about designing a Java browser
component that would leverage off
the standards-compliant and industry
standard browsers already in exis-
tence. We started by writing code that
connected to Internet Explorer and
brought the browser through to Java.
We then moved to bring Mozilla and
Safari through and started support-
ing multiple platforms. The goal has
always been to make the component
as easy to use as possible and to ensure
it is deployable just like any other Java
component. The version 3 release of
WebRenderer was really the culmina-
tion of years of intense development by
the WebRenderer team with a specific

focus upon making WebRenderer a Java
browser component that is standards-
compliant, Swing-compatible, easy to
use and deploy.
 When WebRenderer was first
released there was only one serious
player in the Java browser space. We
saw that the space was somewhat
stagnant and decided that we would
re-energize the market through a Java
browser component with a unique
and innovative architecture. We have
been able to do that and WebRenderer
is now the top-tier highest-quality Java
browser component. While competi-
tors have sat stagnant for years our
WebRenderer revenues have more
than doubled year-on-year since
release. Through the competition
provided by WebRenderer we have
made Java browser components more
accessible to the Java community by
forcing top-tier prices down by as
much as 80%. The client Java space
is an interesting and exciting market
space to be in as we go through the
re-emergence of Java rich clients. The

Q&A

Interview by
Jeremy Geelan

Coexisting in the Java Universe

A

Jeremy Geelan is group

publisher of SYS-CON Media

and is responsible for the

development of new titles and

technology portals for the

firm. He regularly represents

SYS-CON at conferences and

trade shows, speaking to

technology audiences both in

North America and overseas.

jeremy@sys-con.com

An interview with Anthony Scotney, chief technical officer of WebRenderer’s
development company, JadeLiquid Software

Anthony Scotney

www.SYS-CON.com/JDJ28 June 2005

Java community was focusing so hard
on Web Services that we knew it was
only a matter of time before there
would be a client-Java re-emergence
to drive the presentation layer of the
distributed architecture.

Q Why do you think Sun has never
built a Web rendering engine into the

Java SDK itself?
 Sun actually developed a Java
browser engine (HotJava) but it was
dropped a long time ago. They kept a
skeletal HTMLEditorKit for the SDK
that offers basic HTML 3.2 rendering.
I assume that Sun found the project
too resource-intensive and in a way
probably felt like they were reinvent-
ing the wheel years after Microsoft
and Netscape released browsers. With
Web standards evolving the resources
required to develop and maintain a
standards-compliant rendering com-
ponent would have been larger than
that required to maintain the entire
Swing and AWT toolkits.

Q Presumably WebRenderer sup-
ports JavaScript and XHTML? How

about advanced CSS (CSS2)? Maybe
you should just list the standards v3.0
complies with.
 WebRenderer is the most standards-
compliant Java browser component
commercially available. The standards
compliance comes from the underlying
use of Mozilla technologies. The Mozilla
team has followed the W3C specifica-
tions (and other standards) to a “tee”
while building Mozilla. So anything that
Mozilla supports WebRenderer inherits.
I guess you could say WebRenderer has
good parentage. Some of the standards
WebRenderer supports are: HTML 4.01,
CSS 1 & 2, JavaScript, XML, XSL, XSLT,
XHTML, and SSL.

Q How does WebRenderer differ specifi-
cally from other Java HTML render-

ers like, say, Javio or NetClue?
 The challenge of rendering Web-
content comes by virtue of the
number, complexity, and evolving

nature of Web standards. A basic
Web-content rendering component
must support base standards such
as HTML, CSS, JavaScript, and SSL.
Without support for these base-
level standards Web content will
either not render or render in a
non-standards-compliant manner
leading to an unexpected visual ap-
pearance. WebRenderer addresses
the rendering challenge by leveraging
off Internet Explorer, Mozilla, and
Safari browser technologies to provide
a predictable and standards-com-
pliant rendering of real-world Web
content.
 Given that WebRenderer is a layer
above Mozilla/Internet Explorer/Safari
it supports all common Web standards
and the rendering predictability and
faithfulness is greater than its pure
Java counterparts. It is an extremely
time-intensive task to write a pure
Java implementation of, say, Internet
Explorer, which has had hundreds of
people and who knows how many hours
spent on its parsing and rendering.
Expecting any small company to deliver
standards-compliant rendering from its
own implementation is an unrealistic
expectation.
 WebRenderer also has a very
complete API that allows developers
to easily extract basic right through to
advanced functionality without being
overly complex.

Q What’s support for Swing
like?

 We have spent years perfecting
WebRenderers Swing support. As of
WebRenderer version 3 Swing compat-
ibility is excellent.

Q Is it suitable for embedded devices, or
is the desktop your main market?

 Initially we spent some time on
an R&D pilot of WebRenderer for
embedded devices. While we found
that we could port WebRenderer to
embedded devices, we found that
there was little market demand. So we
focused on the desktop market. With

the release of WebRenderer Server Edi-
tion we are supporting headless server
environments and directing some
attention to server-based Enterprise
Java.

QWhat kind of organizations are us-
ing WebRenderer right now?

 WebRenderer is in use in many large
and small organizations throughout the
world. Given WebRenderer is a com-
ponent the verticals are spread across
many industries such as aerospace,
semiconductor, manufacturing, tech-
nology, government, education, and
finance.
 Some of the organizations deploying
WebRenderer include Cisco, Northrop
Grumman, Lockheed Martin, the U.S.
Department of Defense, the European
Space Agency, the European Patent
Office, Groxis, and Encyclopedia
Britannica.

QCan individual developers
download a trial version, or

does their organization have to buy
WebRenderer outright for them to
be able to try it out?
 WebRenderer is available for a free
30-day trial.

QWhat kind of support do you offer
to users?

 Our first line of support is our well-
documented Developers Guide, API,
and technical examples.
 We provide a complete pre- and
post-sales support service that involves
customization, integration, and deploy-
ment assistance and technical issue
resolution.

QLast, we all know that the Chinese
call tea “liquid jade” but what’s the

connection between the poet Lu Yu, who
first came up with the notion about the
year 780 and your endeavor well over a
thousand years later? ;-)
 The JadeLiquid name is fitting for
the architecture choice of our com-
ponents, not pure-Java, but it happily
coexists.

Q&A

The challenge of rendering web content comes by virtue
of the number, complexity, and evolving nature of Web standards”“

www.SYS-CON.com/JDJ30 June 2005

Ed Burnette is the author

of the EclipseIDE Pocket Guide

(to be published later this year

by O’Reilly), co-author of Eclipse

in Action, and editor of the

articles section at eclipse.org.

He writes about Eclipse and the

Rich Client Platform at his Web

site, www.eclipsepowered.org.

Ed has programmed everything

from multi-user servers to

compilers to commercial video

games since earning a BS in

computer science from North

Carolina State University. He is

a principal systems developer

at SAS, and lives near Research

Triangle Park, North Carolina,

with his wife, two kids, and a

whole bunch of cats.

ed.burnette@sas.com

by Ed Burnette

What’s New in
Polishing the apple

First Look

ince Eclipse’s first release in 2001, it has become
a popular environment for Java development. In
the period between March 10 and May 11, 2005,
users downloaded over 17,000 copies of one of

the production SDK releases and over 3,500 copies of
one of the stable (milestone) SDK builds on average
every day. A vibrant eco-system of developers, plug-in
providers, authors, and bloggers has grown up around
it. Eclipse has also gained the backing of the key Java
vendors including BEA, Borland, IBM, SAP, and Sybase.
Developers like Eclipse because it provides a great plat-
form for building Java applications, and companies like
it because it unifies their software tools under one open
source umbrella.
 In late June of this year, the latest release of the Eclipse
Platform, version 3.1, will be available for download
from eclipse.org. In this article, I’ll highlight some of
the more interesting new features it contains. I’ll also
discuss some of the other Eclipse projects that are re-
leasing new versions at about the same time.

A New Hope for Developers
 One of the major new features of Eclipse 3.1 is full sup-
port for the new language constructions in J2SE 5.0 (also
called J2SE 1.5 in the old numbering scheme). Generics,
annotations, enums, auto boxing, enhanced for loop,
etc., – it’s all in there, both in the underlying compiler
and the user interface and code assistance that Eclipse is
known for.
 While Eclipse didn’t invent the idea of refactoring, it
provides one of the most complete implementations.
Eclipse 3.1 comes with a number of new and enhanced
refactorings, code assistance, and “quick fixes”, many in
conjunction with its J2SE5 support. For example, you can
put your cursor on a conventional for loop that iterates
over an array (see Figure 1), press Ctrl+1, and Eclipse will
offer to convert it to one of the new style for loops (see
Figure 2).

 At the heart of Eclipse’s Java support is a fully compli-
ant incremental Java compiler, written in Java and sup-
porting Java language levels 1.3, 1.4, and now 5.0. Having
its own compiler brings Eclipse some benefits including
fast compilation, smoother debugging and refactoring,
and a lot of diagnostic warnings. The compiler has found
several uses outside of Eclipse. It’s bundled with many

popular Linux distributions and commercial applica-
tions, and recent versions of Apache Tomcat use it to
compile JSPs. It forms the basis of the AspectJ compiler.
And I wouldn’t be surprised to see the Eclipse compiler
used in the recently announced Apache Harmony project
as well.
 Other usability enhancements make 3.1 more pro-
ductive. For example, the new release contains a more
integrated help system that changes to show help for
what you’re doing at all times. One of the largest improve-
ments is in the area of Preferences. Addressing a key user
request, the Preference dialog now offers the ability to
filter by keywords, for example, you can easily find all op-
tions having to do with “tabs” by typing that keyword into
the filter box. In addition, Web-like navigation has been
added to link to related preferences and go forward and
backward in the history.
 To make preferences easier to find, in Eclipse 3.1 the
Preferences dialog can be opened directly from many edi-
tors and views through the context menu. For example, if
you right-click in the Java editor and select Preferences...,
the dialog will appear. Only the options related to Java
editing, including those for the text editor that the Java
editor inherits, are shown.
 Eclipse 3.1 improves its Ant support by including the
latest version of Ant, and an Ant script debugger (see
Figure 3), plus many editor enhancements. Another
welcome addition: the ability to import a project from an
Ant build file, and to export and generate a build file from
an existing Eclipse project – you can synchronize your
CLASSPATH and build.xml with a few clicks. The gener-
ated build.xml is simple and clean, with a provision for
a build-user.xml that you can override and still keep the
benefits of build.xml generation. This is another example
of the community in action: the import/export feature
is based on the contribution of Richard Höfter, author of
the eclipse2ant plugin.
 One thing to note is that all these new features don’t
come with a performance penalty. Eclipse 3.1 is a lot
faster and uses far less memory for common operations
than version 3.0. Don’t believe me? Check out the perfor-
mance tests results on the download page for any recent
build. These improvements are not just for Windows;
Mac and Linux users will notice even it even more due to
the special attention paid to those platforms. The graphs

S

����������������������������������

����������������������������������

www.SYS-CON.com/JDJ32 June 2005

don’t tell the whole story, however. In normal day-to-day
work I’ve found Eclipse 3.1 to be much snappier than any
previous version.
 With developers working with ever larger and more
complex projects, their IDE needs to keep up. In order to
experience and study problems with large workspaces,
the Platform team created one consisting of 135 separate
projects and 70,000 classes and other resources. Then, using
various profiling tools they identified and corrected many
bottlenecks, mainly in the area of memory usage and I/O.
As a result, Eclipse 3.1 can handle bigger problems in less
time than before. Launching the test workspace used to take
close to two minutes, but in Eclipse 3.1 it now takes under 10
seconds.

Return of the Java Client
 Java started out on the desktop, and now after a brief
vacation on the server side, it’s returning to the desktop
with a vengeance. The Rich Client Platform (RCP) is helping
to spark this renaissance. RCP is a subset of Eclipse that
provides a framework for application development. It in-
cludes a widget toolkit (SWT), the plug-in loaders, the help
system, and other components that you can use in your
own programs.
 By taking advantage of this free “client middleware,”
you can focus on your core competencies and reduce
your time-to-market. Eclipse’s corporate-friendly license
(EPL) allows you to reuse the code in your own programs,

whether or not they are open source. You can modify and
redistribute the code, as long as you return any improve-
ments to the community.
 The biggest change for RCP in Eclipse 3.1 is a set of
wizards and editors for creating, building, branding, and
deploying RCP applications. To create an RCP application
just create a plug-in project, click the checkbox that says
“Create an RCP application”, select a template, and then click
Finish. With a few more clicks you can export the project to
create a deployable application. No more trying to figure
out plug-in dependencies, tweaking configuration files, and
copying plug-ins by hand. All that’s handled for you in the
new release.
 Branded applications are supported through the
new Product Configuration editor. You can change the
window titles, icons, splash screens, and other branded ele-
ments of your program quickly and easily. And with
the RCP Delta Pack you can create deployable packages for
all supported platforms at the same time (see Figure 4).
 RCP applications can take advantage of dynamic
plug-ins, that is, plug-ins that come and go at runtime. This
provides flexibility to the RCP application delivery model.
A large application can be deployed progressively as plug-
ins are loaded or on demand when extra functionality is
needed. This technology was originally designed for mobile
phone provisioning as part of the OSGi Service Platform,
and later implemented in Eclipse by the Equinox project
team. Eclipse is an active participant in OSGi, and Eclipse
3.1 includes several features slated for version 4 of the OSGi
standard.
 In one proof-of-concept example shown at EclipseCon,
the developers demonstrated a calculator program that
started out with only a plus and minus button. Using
Eclipse’s update manager and dynamic plug-ins, the calcu-
lator then downloaded a new plug-in that added a multiply
button. All this is done in the running JVM process without
a restart.
 One of the most frequently asked questions about RCP-
based applications is if you can deploy them with Java Web
Start. The answer in Eclipse 3.1 is yes. New feature export
wizards make this easy; they’ll even sign the JARs for you and
create a template .jnlp file. In support of Java Web Start, most
Eclipse plug-ins have been converted to regular old Java .jar
files. Information about extension points, plug-in dependen-
cies, and so on go in manifest files inside the JARs.
 In Eclipse 3.1, client developers can take advantage
of a slew of UI improvements to make their applications
even more functional and better looking than before. For
example, SWT includes two new widgets: a Spinner widget
for numeric data entry and a Link widget that allows
hyperlinks to be included in text labels. A number of other
widgets were enhanced.
 The Tree widget now supports columns, deprecating the
older TableTree widget. This allows a native implementa-
tion and helps resolve some of the more subtle problems
with the TableTree, including the inability to add an image
in the first column. Also the Table widget got a much
requested feature: the ability to drag and drop columns to
reorder them within the table. Virtual tables with deferred
loading are also supported.

 Figure 1 Press Ctrl+1 to convert a normal array iteration loop.

 Figure 2 After conversion, the code uses the enhanced J2SE5 for loop.

 Figure 3 The Ant debugger lets you single step and examine variables in Ant scripts as you would a Java program.

First Look

www.SYS-CON.com/JDJ34 June 2005

 The Browser widget continues to get attention as well.
This widget wraps the native HTML browser on the current
platform (for example, IE on Windows and Safari on the
Mac). There have been numerous minor enhancements to
the browser including many to its event mechanism. Per-
haps the most exciting feature is the ability to execute an
arbitrary string of JavaScript within the browser’s currently
loaded page.

 Another area that was improved is SWT graphics.
Eclipse 3.1 supports alpha-blending, anti-aliasing,
paths for geometric shapes and lines, and transformations
(see Figure 5). On Windows, using these GC new features
takes advantage of the Microsoft GDI+ library (which is
included with Windows XP and 2003 but available as a
separate download on older systems). On GTK and Motif,
the new graphics are implemented with the Cairo graph-
ics library.

The Community Strikes Back
 Community involvement is crucial to the success
of Eclipse. One of the things you’re expected to do as
a good Eclipse community citizen is report your ideas
for enhancements along with any bugs you find. Since
the source code is available, some take the next step
and send code patches as well. Over 7,000 enhance-
ment requests and bug reports have been addressed in
release 3.1.
 The Eclipse community continues to grow through
the addition of new projects. As of this writing, over a
dozen new project proposals are pending or have been
recently approved. Many of these are “Technology” proj-
ects, which are often created by groups of users that band
together to fulfill a need. For example, the Mylar project
was created at the University of British Columbia to ad-
dress the problem with information overload by filtering
out uninteresting classes and other artifacts while you’re
programming.
 Following on the heels of the 3.1 release of the Eclipse
Platform, a number of other Eclipse projects is expected
to be released. One of the biggest, the Web Tools Platform
project, or WTP for short, is scheduled to release a new
version in late July. WTP was initially based on contribu-
tions from IBM and ObjectWeb, but many companies
and individuals in the community are working on it now,
including recent joiner BEA.
 The Web Tools Platform currently has two subprojects:
Web Standard Tools (WST) and J2EE Standard Tools
(JST). WST provides a common infrastructure for Web
applications development and provides editors, valida-
tors, and document generators for a wide range of Web
languages (HTML/XHMTL, CSS, JavaScript, Web services,
SQL, XML, XSD, WSDL, etc.). You can also publish and
deploy, run and debug, start and stop Web applications
on target servers (see Figure 6). WST also includes
a TCP/IP Monitor server for debugging HTTP traffic
(including SOAP Web services), and a Web services
explorer that is very handy for testing. Currently it also
has support for relational databases management and
queries, though that may be moving to the new Data
Tools project soon.
 JST extends WST for J2EE applications and servers.
Included is a range of tools simplifying development
with J2EE APIs including JSP, JCA, JDBC, JTA, JMS, JMX,
JNDI, and Web services. It builds on WST to support J2EE
servlet engines and EJB containers, including Apache
Tomcat, Apache Geronimo, and ObjectWeb Jonas. Server
vendors are encouraged to develop adapters for their
servers.

First Look

 Figure 4 Create branded, deployable cross-platform products with a few clicks using the new

export wizards.

 Figure 5 SWT now supports alpha blending and anti-aliased text (see inset).

www.SYS-CON.com/JDJ36 June 2005

 Another widely anticipated project is the Business
Intelligence and Reporting Tools (BIRT) project. BIRT 1.1
is targeted for July, and it will be based on Eclipse 3.1. Cur-
rently BIRT includes three components:
• A Report Designer for developing and designing XML

report templates
• A Report Engine for generating reports based on the

XML template (you can use it standalone or embedded
in other applications)

• A Chart Engine for creating charts within BIRT reports
or as a standalone API to draw charts in your Swing or
SWT applications.

 Future plans for BIRT include a Web-based Report
Designer.
 The Eclipse Test and Performance Tools Platform Project
(TPTP), formerly known as Hyades, will launch the 4.0 re-
lease in July as well. TPTP delivers components in four areas:
• A platform for building testing tools, with common UI

components and standard data models
• Monitoring tools for things like analyzing a Web

server
• Test tools, including support for JUnit
• Tracing and profiling tools

 TPTP 4.0 delivers better integration with JUnit, new hooks
to make it easier to link test cases back with requirements
and defects, and usability improvements.
 Visual Editor Project (VE) The Visual Editor Project will be
releasing version 1.1 approximately two weeks after Eclipse
3.1. Highlights include:
• Support for new SWT controls

• Better support for Swing tables
• Copy/paste support
• Support for editing Eclipse views directly (especially use-

ful for RCP programs)
• Better code generation and reverse parsing (produces

code more like what you would write by hand)

 The AspectJ Technology Project will release AspectJ
5.0 soon after Eclipse 3.1 is shipped. The new version
includes full support for J2SE5 features, integration of
AspectWerkz-style code, better deployment (especially for
container-based environments), faster performance, and
more comprehensive IDE support. For example, generics
are integrated with AOP language features such as join
points, pointcuts, advice, and inter-type declarations.
Annotations bring AOP to pure Java source files, so you
can continue to use your favorite Java compiler and then
weave in the aspects in another build step or when classes
are loaded. Deployment in J2EE containers is easier and
compiling and weaving runs faster and generates better
code than before. The class-loading and runtime aspect
weaving that made AspectWerkz so convenient should
also be supported.
 For a gentle introduction to AOP, you may want to
check out the Concern Manipulation Environment project
(CME) project. It offers powerful code navigation to help
you identify cross-cutting aspects in your existing Java
code.

Finale
 In four short years since Eclipse exploded onto the
scene, it has come to dominate the Java IDE landscape.
User groups have sprouted up around the world, and
hundreds of books and articles have been written about it
(two dozen in Japanese alone!). Eclipse 3.1 is the culmina-
tion of a year’s worth of development effort on features
such as J2SE5 support, performance improvements, and
rich clients. If that weren’t enough, it will be the base of the
next wave of software releases from the Eclipse Founda-
tion and its partners. Whether you’re a programmer trying
to build the next Killer App or an entrepreneur building a
business model on open source, this is an exciting time to
be involved with Eclipse.

Acknowledgments
 I wish to thank the many readers of www.eclipse-
powered.org who contributed to this article, including
Chris Gross, Philippe Ombrédanne, Ng Chin Kiong, Sam
Mesh, Bob Foster, David Orme, mgallego, lmandel, and
nobodaddy. And a special thanks to Xavier Méhaut, who
maintains the Eclipse wiki site, http://eclipse-wiki.info,
where we worked on the draft.

First Look

 Figure 6 WST is expected to ship with support for several open source servers like Tomcat

No more trying to figure out plug-in dependencies, tweaking
configuration files, and copying plug-ins by hand;

all that is handled for you in the new release”
“

Now there’s a high-performance storage engine that loves Java just as

much as you do: Berkeley DB Java Edition (JE). Brought to you by the

makers of the ubiquitous Berkeley DB, Berkeley DB JE has been written

entirely in Java from the ground up and is tailor-made for today’s

demanding enterprise and service provider applications.

Berkeley DB JE has a unique architecture that’s built for speed. The software executes in the JVM of your application,

with no runtime data translation or mapping required. And because it supports J2EE standards such as JCA, JMX

and JTA, you can be sure you have the widest range of options.

Experience the outstanding performance of Berkeley DB JE for yourself.
Download Berkeley DB Java Edition today at www.sleepycat.com/bdbje, and view the presentation “Design

and Implementation of a Transaction Data Manager.”
©

2
0

0
5

S
L

E
E

P
Y

C
A

T
S

O
F

T
W

A
R

E
IN

C
.

A
L

L
R

IG
H

T
S

R
E

S
E

R
V

E
D

.

Javavavoom!
Get a high-performance, transactional storage engine that’s 100% Java.

Berkeley DB Java Edition 2.0
Download at www.sleepycat.com/bdbje

Now there’s a high-performance storage engine that loves Java just as

much as you do: Berkeley DB Java Edition (JE). Brought to you by the

makers of the ubiquitous Berkeley DB, Berkeley DB JE has been written

entirely in Java from the ground up and is tailor-made for today’s

demanding enterprise and service provider applications.

Berkeley DB JE has a unique architecture that’s built for speed. The software executes in the JVM of your application,

with no runtime data translation or mapping required. And because it supports J2EE standards such as JCA, JMX

and JTA, you can be sure you have the widest range of options.

Experience the outstanding performance of Berkeley DB JE for yourself.
Download Berkeley DB Java Edition today at www.sleepycat.com/bdbje, and view the presentation “Design

and Implementation of a Transaction Data Manager.”

©
2

0
0

5
S

L
E

E
P

Y
C

A
T

S
O

F
T

W
A

R
E

IN
C

.
A

L
L

R
IG

H
T

S
R

E
S

E
R

V
E

D
.

Javavavoom!
Get a high-performance, transactional storage engine that’s 100% Java.

Berkeley DB Java Edition 2.0
Download at www.sleepycat.com/bdbje

www.SYS-CON.com/JDJ38 June 2005

his year will be the first time in
10 JavaOnes that I haven’t been
a Sun employee. As I am now
fairly local to the show I should

be able to attend again this year. I’ve
met many developers from around
the world who make the annual trip to
San Francisco. Many still see it as the
Java event to network at, even though
attendance is off the highs of the dot.
com days.
 Now you may think that being a
Sun employee automatically gets you
a free pass to the JavaOne show. Well
it doesn’t. In the early days there were
a small number of passes for JavaSoft
engineers, but the only way we could
attend was to prepare a session or an
evening birds of a feather discussion.
At the peak Sun engineers were even
banned from buying a JavaOne pass to
free up places for Sun customers and
Java developers. So to accommodate
the Java developers inside the com-
pany Sun runs a mini-JavaOne confer-
ence originally called Java Premier
that included select talks from the
conference. At its peak JavaOne was
almost too big. It was impossible to get
a hotel room months before the event
and I remember Pat Sueltz, the VP of
Java, asking in her keynote if anyone
had a free room since she didn’t have
a place to stay that night. I don’t think
she was joking. I only managed to find
a place with two other colleagues in a
flea-bitten motel south of Market.
 The JavaOne stage has seen a Who’s
Who of the Java world and beyond.
One of the most memorable sessions
for me was a talk by the late Douglas
Adams whose cult classic “The Hitch-
hikers Guide to the Galaxy” is current-
ly showing in theaters in the U.S. He

gave a great perspective on things and
just not Java. I don’t know who they’ve
lined up as the special guest this year,
sometimes availability isn’t confirmed
until very close to the event. I’ll be
checking MaryMaryQuiteContrary’s
blog for details of the keynotes and the
after-show parties.
 For the main keynotes, I would
expect the usual presentations we’ve
seen for the past five years, lots of sta-
tistics about Java including the num-
ber of downloads and an emphasis on
phones and J2ME from Sun. The first
day’s keynote rarely starts on time so
unless you have your wireless laptop
(hint) you may be sitting for quite a
while. The keynotes are often available
by live webcast so check back with
the JavaOne site nearer the time if you
can’t make the show.
 One final thought on keynotes,
I wouldn’t be too surprised to see
Microsoft on stage or with their own
keynote session since they’re appar-
ently a sponsor this year. The last year
I remember Microsoft having any
real presence was at the first JavaOne

when they organized a free party at a
local restaurant.
 The rest of the day is made up
of hour-long sessions. The limit on
rooms makes session selection dif-
ficult, often a speaker will get at most
one talk accepted and the tempta-
tion is to try and target the session
at a middle ground, especially if the
planners expect a large audience. This
is one of the reasons the advanced ses-
sions can never be that advanced. For
Sun employees writing the presenta-
tions is more drawn out since there
are trademark and other reviews that
have to take place while meeting your
own work deadlines.
 My tip, if the presenter didn’t cover
the material you wanted to see I would
recommend asking questions at the
end (after they’ve cleared the stage to
make way for the next presentation).
More often than not they’ll know the
answer but couldn’t cover it in the
given presentation time. I was always
happy to sit down over coffee if it came
to that.
 The evening brings the BOFs
and after-dark entertainment. We
probably won’t see parties like the
Iona Spinal Tap concert again but
many of the smaller vendor events
can be just as much fun and are
useful for networking. Make sure
you ask around the pavilion floor for
events. Most will occur in the first two
evenings so make sure you visit the
pavilion early.
 In closing if you don’t get to attend
the show look for slides and webcasts
afterwards. There are many dedicated
folks at Sun who work tirelessly to make
JavaOne the best developer conference
they can so I hope you enjoy it.

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

JavaOne
from the Inside Out

T

A section editor of JDJ since

June 2004, Calvin Austin

is an engineer at SpikeSource.

com. He previously led the

J2SE 5.0 release at Sun

Microsystems and also led

Sun’s Java on Linux port.

calvin.austin@sys-con.com

One of the most memorable sessions for me was a talk by the late
Douglas Adams... he gave a great perspective on things, not just Java”“

www.SYS-CON.com/JDJ40 June 2005

’m really jazzed about Java 5.0! We’ve been treated over
the years to incremental improvements in JVM perfor-
mance. JDK 1.2 brought us the collections framework
as well as Swing, the thread context class loader, and
improvements in RMI. JDK 1.3 and 1.4 continued in

the same vain with logical improvements to libraries, JVM
enhancements, and performance upgrades. Although this
article doesn’t intend to take trip down memory lane, it’s
important to understand that Java 5.0 brings a truly remark-
able and rich set of new tools to our programming land-
scape as compared to other JDK releases.
 This article will survey some of Java 5.0’s new features
and put them into practice through example. We’ll build
up a lightweight aspect-oriented system based on annota-
tions to showcase what’s new in 5.0. Some of these features
you may be familiar with, some you may not. I’ve at-
tempted to mix the obvious with some of the obscure. We’ll
examine some of the new hooks that the JVM has exposed
for class loading, which makes the once dreadful work of
bytecode manipulation during class loading much easier.
In the “obvious” column, we’ll look at generics and how
they enable us to write more robust and sane programs,
especially when dealing with collections. Perhaps the most
notable aspect of Java 5.0 that we’ll examine is the annota-
tion framework. Annotations allow developers to inject
metadata into their applications. We’ll use this feature to
demark classes we want manipulated at load time. To put
this all in context, we’ll create a lightweight framework that
will manipulate classes as they are being loaded to enable
logging, security, BAM (business activity monitoring), or
any number of other scenarios that have yet to be dreamed
up (The source code for this article can be downloaded
from http://jdj.sys-con.com.)

Annotations
 Annotations are nothing new. In concept we’ve been
injecting forms of metadata into our programs for years.

If you’ve ever used XDoclet or EJBGEN to annotate a class
in preparation for EJB deployment descriptor generation,
you’ve used a form of annotation. Although these annota-
tion methods are primarily manipulated during compila-
tion, frameworks do exist that allow runtime access to
annotations. Those that come to mind are the Jakarta
Commons Attributes project and the metadata infrastruc-
ture in the Spring framework. One important thing to note
from the Spring documentation regarding the use of Java
1.5 annotations versus metadata available in the Spring
framework is the following:

 “JSR-175 metadata is static. It is associated with a class
at compile time, and cannot be changed in a deployed
environment. There is a need for hierarchical metadata,
providing the ability to override certain attribute values in
deployment – for example, in an XML fi le.”

 For our purposes, however, the annotations sugges-
ted by JSR-175 and implemented in Java 5.0 will be
sufficient.

Anatomy of an Annotation
 Generally, annotations are thought of only as artifacts
useful at compile time by tool vendors to do such things
as generating deployment descriptors. This is what utili-
ties such as XDoclet and EJBGEN do. The annotations are
examined at compile time, used to generate output (in the
case of EJB this maybe a deployment descriptor) and in a
sense are then discarded thereafter as an artifact. Annota-
tions in Java 1.5 can behave in a similar way, but they can
also be retained past the compilation stage and accessed
at runtime. The developer has three retention policies to
choose from. They are:
• RententionPolicy.CLASS: Annotations are to be record-

ed in the class file by the compiler but need not be
retained by the VM at runtime

Peter Braswell possesses

over 15 years of software

engineering expertise. He has

led the implementation of

leading-edge, mission-critical

systems and applications

in a variety of industries

including high technology,

fi nance, retail, and

telecommunications. His

solution and technology

experience encompasses

large object-oriented

systems, distributed object

infrastructure, and enterprise

system integration. Peter holds

a BS in computer science with

a minor in philosophy from Old

Dominion University.

pbraswell@alterthought.com

by Peter Braswell

I

Building an aspect-oriented
framework based
on annotations

Feature

Building an aspect-oriented
framework based framework based

Kicking the Tires
on Java 5.0

Annotations are really nothing new. In concept we’ve been
injecting forms of metadata into our programs for years”“

41June 2005www.SYS-CON.com/JDJ

• RententionPolicy.RUNTIME: Annotations are to be record-
ed in the class file by the compiler and retained by the VM
at runtime, so they can be read reflectively.

• RententionPolicy.SOURCE: Annotations are to be discard-
ed by the compiler.

 To declare a new annotation type, the developer must
specify a retention policy for his or her annotation, what the
element type is and what attributes the annotation possesses.
The developer can associate an annotation with a particular
element Valid element types are:
• ElementType.Constructor: Associates an annotation with a

constructor.
• ElementType.Field: Associates an annotation with a field.
• ElementType.LocalVariable: Associates an annotation with a

local variable.
• ElementType.Method: Associates an annotation with a method.
• ElementType.Package: Associates an annotation with a

package.
• ElementType.Parameter: Associates an annotation with a

parameter.
• ElementType.Type: Associates an annotation with a type.

Let’s look at a typical annotation declaration.

package annotations;

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.METHOD})

public @interface BAMAnnotation

{

 String insertionPoint();

 String processBean();

}

 What’s notable here is that the annotation declaration is
strikingly similar to an interface declaration and that the
metadata for this annotation is defined in terms of an an-
notation! This particular annotation is used on a method
and its values are accessible at runtime as dictated by the
retention policy. The annotations require two attributes to
be defined, “insertionPoint” and “processBean. To use this
annotation in a class is pretty straightforward:

import annotations.*;

public class BizComponent

{

 @BAMAnnotation(processBean=”nullInjector”,

 insertionPoint=”pre”)

 public void execute()

 {

 System.out.println(“Executing”+

 “some biz functionality”);

 }

}

 Here we’ve associated our annotation with the “execute()”
method of our “BizComponent” class. When we examine this
class at runtime the values of “processBean” and “insertion-
Point” will be “nullInjector and “pre” respectively.
 For those of you who have figured it out already or perhaps

those of you who are wondering, what we are developing is a
scheme by which we declare our aspect point-cuts via annota-
tions. From a programming perspective we’re dealing with an
ordinary class (BizComponent) and we’re using an annotation
to tag it for bytecode engineering during the class-loading
phase (more on this later). The nice thing about this approach
is that the annotation (metadata) lives close to the source code
eliminating the need to alter multiple source files. Compare
this to “conventional” aspect-oriented programming where you
have to declare this point-cut in a separate file and precompile
or wire things up in an XML file like you would using Spring.

Getting Annotation Information at Runtime
 From a programming perspective, getting information
out of an annotation is pretty straightforward. Continuing
with the example that we’ve developed to this point, imagine
that we have a candidate class that we want to examine for
annotations. We know that only our methods are annotated,
so given a class, we first extract all the “Method” objects and
iterate over them searching for our annotations, like so:

for(Method m : methods)

{

 …

 Annotation [] annotations =

 m.getDeclaredAnnotations();

 for(Annotation a : annotations)

 {

 System.out.println(“annotation type: “

 +a.annotationType());

 if(AMAnnotation.class.getName().

www.SYS-CON.com/JDJ42 June 2005

Feature

 equals(a.annotationType().getName())

 {

 // Byte-code engineering here…

 }

 }

}

 Note the use of the new for loop iterator. Gone are the
days where you have to iterate over unsafe, un-typed col-
lections. Happy Days indeed!
 Once we have the Annotation object, getting proper-
ties is just as simple as this snippet of code demonstrates:

if(getAnnotationProperty(“insertionPoint”, a.toString()).

equals(“pre”))

{

 …

}

 This code block simply pulls a property value out of the an-
notation and checks to see if it literally equals the string “pre.”

Great, What Happens Next? – Class Loading in 5.0
 So now that we have our classes all annotated up,
what do we do? Recall the intent of our Java 5.0 featured
framework. We want to be able to annotate our classes (mark
them) so that at runtime they are loaded in, examined, and
altered (if they have the correct annotations) in such a way
that a piece of code will run either before (“pre”) or after
(“post”) our business method gets executed.
 The class-loading mechanism in Java 5.0 has been ex-
tended and has provided us with a really slick feature: agents!
Very simply, an agent class is something that you pass along
to the VM via a command-line argument that lets you do
things PRIOR to your main being called. Among other things,
you can install a class-file transformer that’s invoked after
the class has physically loaded into the VM, but before the
class is handed back to the application. What this gives you
is the ability to manipulate the class physically as it’s being
loaded by the JVM. Before Java 5.0, this involved somewhat
tricky, awkward custom class-loader wizardry. No more!
 Here’s the full implementation for our Agent class:

import java.lang.instrument.*;

public class Agent

{

 public static void premain (String fqnBCEngineeringClass,

 Instrumentation instrumentation)

 {

 try

 {

 // Install the new bytecode engineering loader

 ClassFileTransformer xformer = (ClassFileTransformer)Thread.cur-

rentThread().getContextClassLoader().getClass().forName(fqnBCEngineer

ingClass).newInstance();

 instrumentation.addTransformer(xformer);

 }

 catch(Exception ex)

 { System.err.println(“Could not instantiate Bytecode Engineering

Class: “+ex.getMessage()); }

 }

} // class Agent

 There’s nothing special about an Agent class, other than it
must contain the one static “premain(String, Instrumenta-
tion)” method. Besides that, it doesn’t have to implement any
particular interface or extend any particular class. So in our
case our agent code will get called in advance of our static
main being executed. This requires some special arguments
to the JVM that we’ll cover in a moment. When our premain
gets executed, we’ll have two parameters passed in. One is the
fully qualified name of our bytecode engineering class and the
other is the hook that we’ll need to install it.
 Notice that the premain method dynamically (via
reflection) tries to instantiate the transformer class and then
turns around and installs it as a class-file transformer. The class
instantiated here is the class that implements the interface
“java.lang.instrumentation.ClassFileTransformer.” In our case,
this is the class that will do all the heavy lifting of the class file
transformation. It’s also the routine that slogs through classes
looking for the marker annotations that slate a class for byte-
code engineering.
 Getting the Agent class to execute requires a bit of legwork.
First at compile time, we must create a Manifest file that spec-
ifies a premain class. The easiest way I’ve found to accomplish
this is in the Ant script that assembles the jar. Here’s a snippet
of the Ant task that simply stipulates the correct name-value
that gets injected into the Manifest file and will cause the JVM
to call my agent class prior to calling main().

<jar jarfile=”${dist}/j105.jar” update=”true” >

 <fileset dir=”${classes}”/>

 <fileset dir=”${configure}”/>

 <manifest>

 <attribute name=”Premain-Class” value=”Agent”/>

 </manifest>

</jar>

 Ok, we’re almost done with the Agent installation. The only
thing left is to pass the correct information into the JVM that
causes the Agent to get called and the class-file transformer to
be instantiated and installed. Here’s the command line argu-
ment that accomplishes this:

java -cp %CP% -javaagent:%DIST%\j105.jar=MyTransformer Main

Generics also support a tighter contract between caller and service,
which is generally, always a good thing”“

43June 2005www.SYS-CON.com/JDJ

�

 It may not be clear as to what is happening here. The “-javaagent:
[path to jar]\[jar file]=[String Arg to Agent]” works like this: The jar file
that’s specified is the jar file that contains YOUR agent (in our case
our “Agent” class). Recall that this jar file MUST contain the manifest
file that specifies the premain class that is to be called. It was my
experience developing this framework that simple mistakes in this
setup cause nothing to happen! That is, your agent won’t be loaded,
your classes won’t be transformed and your pre- or post-invocation
methods won’t be called with your business methods. The source code
included with this article contains simple println statements that
should tell you what is (or isn’t) going on with the framework.

Byte-Code Engineering
 Up to this point I haven’t introduced anything that isn’t JDK straight
out of the box, but unfortunately that won’t get us where we want to
go. So just to recap, we’ve developed the ability to mark classes that
we’re interested in transforming (injecting pre- or post-logic). We’ve
created an infrastructure to install a class transformer that will re-
engineer our classes at load time based on runtime annotations. Up
to this point we’ve been dealing with stock JDK components, but it’s
time to take a little diversion.
 Recall earlier that we had to install a class that implemented the
Java interface “java.lang.instrumentation.ClassFileTransformer.” In
the case of our little framework, the name of the class that does this
is called “MyTransformer.” We’ve already seen pieces of this class in
this article. Recall the snippet of code that iterated over a collection
of Methods in a class looking for our marker (the BAM annotation).
What was omitted in that snippet was the actual mechanics of the

class transformation. For stylistic reasons, I’m not going to include
the entire class listing (please see the source code available with this
article). So for a moment, imagine that we’ve intercepted a class being
loaded, we’ve determined that it is annotated with our BAM metadata
and that we now wish to introduce code that’s either executed before
or after the method we’ve determined contains our annotation.
 So as per the “ClassFileTransformer” interface, we must implement
the following method:

public byte[] transform (ClassLoader cl,

 String className,

 Class<?> classBeingRedefined,

 ProtectionDomain protectionDomain,

 byte[] classfileBuffer)

{

}

 In pseudo-code, what this method must do (in our framework) is
to extract the Methods from the “classBeing-Redefined” parameter,
iterate over them looking for annotations. We’ve already seen how this
works. When we find a class that needs to be redefined (annotated),
we must inject the pre- or post-code as directed by the annotation
itself. To accomplish this injection, I used the “JavaAssist” toolkit for
bytecode engineering. I’ve found this one of the easiest and most
straightforward BCELs (Bytecode Engineering Libraries) to use. The
code to do this looks something like this:

CtMethod ctM = cc.getDeclaredMethod(m.getName());

www.SYS-CON.com/JDJ44 June 2005

 if(getAnnotationProperty(“insertionPoint”, a.toString()).

equals(“pre”))

 {

 StringBuffer injectedCode = new StringBuffer();

 injectedCode.append(“{“);

 injectedCode.append(“System.out.println(\”initialize

Spring...\”);\n”);

 injectedCode.append(“ MyTransformer.getInjector(\

””+getAnnotationProperty(“processBean”,a.toString())+”\”).

executeChain(null);\n”);

 injectedCode.append(“}\n”);

 ctM.insertBefore(injectedCode.toString());

}

 JavaAssist makes re-engineering class files trivial. Notice
that I simply concatenate together regular Java syntax and
let JavaAssist translate it into bytecode and tack it on as a
preamble to the method in question. Also, I’ve defined the
method that gets attached in terms of a Spring Bean that the
annotation references. This adds a convenient level of abstrac-
tion and indirection since the pre- and post-logic is defined
in terms of a Spring Bean lookup key as opposed to the fully
qualified class name of the code the developer wants to have
executed before the business method’s execution.

Bringing It All Together
 Last, but not least, I’ve put together some classes that
implement what amounts to an interceptor pattern in our
annotations-based aspect system. These classes are mainly
for convenience and allow us to chain together pre- and
post-method interceptors. They also showcase the generic
and type-safe collections supported by Java 5.0. The fol-
lowing snippet is the declaration for an abstract base type
called “BaseInterceptor”:

public abstract class BaseInjector

{

 LinkedList <BaseInjector> injectors = new LinkedList ();

 public BaseInjector()

 {

 System.out.println(“addding me”);

 injectors.add(this);

 }

 public BaseInjector(BaseInjector bi)

 {

 this();

 injectors.add(bi);

 }

 public void executeChain(Object [] parameters)

 {

 for(BaseInjector bi: injectors)

 {

 bi.execute(parameters);

 }

 }

 public abstract void execute(Object [] parameters);

} // class BaseInjector

 “BaseInjector” holds a type-safe linked list of “BaseInjector”
types. Recall the class that does the bytecode engineering and
introduces method calls either before or after the annotated
method. The code that’s introduced during bytecode engi-
neering is based on the “BaseInjector” class and is resolved
at runtime via the Spring framework. So from a developer’s
perspective to introduce code that’s executed either before a
business method or after a business method, he or she would:
• Create a class (or classes) that extend “BaseInjector” and

implement the execute() method.
• Annotate the business methods you want instrumented

specifying two parameters, the bean lookup key that
Spring will use to build your interceptor and the ‘pre’ or
‘post’ specification that tells the bytecode engineering
code where to tack this interceptor on.

• Configure your Spring file.
• Run the application with the appropriate command-line

switches that properly run the agent prior to main being
called and installs the class-file transformer.

 For completeness, here’s a snippet of the Spring configura-
tion file that wires up the interceptor. Please note that it’s pos-
sible to chain together interceptors; Spring will accommodate
this quite nicely via its ability to reference other beans under
its control and apply them in setters or constructor argu-
ments. Please consult Spring’s documentation for more infor-
mation on this. In this context, the annotation would specify
the “nullInjector” as the processBean attribute and either
“pre” or “post” for the insertionPoint attribute that designates
where the developer intends to have the code executed.

<!-- Null Injector -->

 <bean id=”nullInjector” class=”injectors.NullInjector”

singleton=”false”>

 <constructor-arg><ref bean=”interestingInjector”/></constructor-

arg>

</bean>

Feature

The annotation framework shows great promise for tool and
framework writers; EJB 3.0 threatens to lean heavily on annotations

and may cause the pendulum of ‘XML configuration hell’
to swing the other way”

“

45June 2005www.SYS-CON.com/JDJ

 At runtime, the injected code looks up the interceptor
logic via Spring based on the value of the “processBean”
attribute specified on the annotation being processed.
Once retrieved, the injected code calls the “execute()”
method on the bean that in turn executes whatever code
happens to be in the “execute()” method. This pattern
is fairly common in application server environments
whereby the container must execute a series of intercep-
tors either before or after the target business method.
For instance, a J2EE container may do this on an EJB
call to facilitate security, logging, statistics, and the like
before actually executing the target method on the bean
itself.

Summary, Conclusion, and the Ubiquitous Product Disclaimer
 There are some really notable inclusions in the latest
release of Java. At the very minimum, developers should
embrace generics as a way of making code safer and
more readable. Generics also support a tighter contract
between caller and service that’s generally always a good
thing. The annotation framework shows great promise
for tool and framework writers. EJB 3.0 threatens to lean
heavily on annotations and I suspect this may cause the
pendulum of “xml configuration hell” to swing the other
way. Developers will be able to introduce metadata closer
to the source, which will eliminate the proliferation of
deployment and runtime files that seem to be on the
increase. Sun also seems to be inventing ways to open
the JVM up a little to framework authors and tool build-

ers; as evidence we’ve looked at some of the new hooks
available to us for class loading and on-the-fly class
manipulation. I encourage developers to poke around the
“java.lang.annotations,” the “java.lang.instrument,” and
the “java.lang.management” packages. It’s this “poking
around” that inspired some of the goodies in this
article and the tiny framework that subsequently
developed.
 I also encourage you to download, look at, hack,
and run the source code available with this article. I’ve
included pertinent snips of code, but the gist of this
framework is best realized by looking at the entire
landscape.
 Whoops, I almost forgot the product disclaimer. I
wanted to make sure that I stated that this framework is
a conceptual work and that I do not represent it as a full-
blown aspect-oriented system. I feel the concepts here
are viable and could be developed into a very rich, robust
system but as set forth here are primarily intended as a
backdrop to the new capabilities of Java.

Resources
• http://java.sun.com/j2se/1.5.0/docs/api/
• http://www.onjava.com/pub/a/onjava/2004/04/21/

declarative.html
• http://java.sun.com/j2se/1.5.0/docs/guide/language/

annotations.html
• http://www.springframework.org/docs/reference/index.

html

www.SYS-CON.com/JDJ46 June 2005

 witnessed a recent BOF conversa-
tion in which the general feeling
was that the browser GUI and its
accompanying plethora of back-end

frameworks had let people down by de-
livering a poor return on investment and
a weak user-interface experience.

The Revenge of the Server
 To predict the future you must study
the past. Once upon a time servers ruled
the kingdom of IT, with mainframe boxes
delivering computing power to users
who attached themselves via terminals.
Then the GUI arrived along with cheaper
and faster personal computers that
promised a high-function user inter-
face, challenging the era of the server.
Early attempts to solve the client/server
dichotomy exposed the weaknesses and
strengths of both: the GUI delivered us-
ability and high-end functionality while
the server offered easier deployment
and overall systems integrity. The server
attacked the perceived strength of the
client by offering a browser that provided
a GUI, allowing green terminal users
to put a fresh coat of paint on their ap-
plications. To all but the most belligerent
among us, the browser had become the
de facto user interface of the late twenti-
eth and early twenty-first centuries.

The Clone Wars
 It became clear, however, that to
deliver a serious business application, an
HTML user interface was just part of the
story, and issues such as session state,
transactions, and page management
needed tackling. Back-end frameworks
arose to handle these while front-end in-
novation faltered as forays into the world
of JavaScript and other tricks to spruce
up the user interface failed because pro-
prietary extensions targeting particular
operating systems couldn’t do so without
sacrificing the ubiquity of raw HTML. All
Web applications ended up looking a lot
like each other as the force pushed them
toward the lowest common denomina-
tor, resulting in effective stagnation of the
browser user interface.

 Navigating, validating, or dealing with
multiple forms simultaneously are a client
applications’ home territory; however, as
the browser struggled with these, Mark
Andreessen, Netscape’s inventor, famously
remarked:

 There was one feature that was tem-
porary in Mosaic: the Back and Forward
buttons. That never made a lot of sense
to us. Back to what? Forward to what?
We thought there would be a better way
to navigate. But no one ever came up
with one. … There’s nothing emerging
right now. Creativity stopped in 1997…
http://www.pcworld.com/news/article/
0,aid,110156,00.asp

 Form entry pages where information
is left incomplete have to incur an entire
server round-trip to determine the errant
field, after which a new page is presented
to the user with red text highlighting
the areas that need attention. Sensitive
information such as passwords is often
not included in the error page returned to
the user, so fixing the first error can just
reveal further problems as this is now the
missing required data. Pressing the back
button can throw up the error message:
“The page you requested cannot be
displayed as it is the result of a post opera-
tion – please press Reload to refresh”, after
which a further dialog asks you to confirm
whether this is really your intention. As Dr.
Jakob Nielsen observed: “Billions of dollars
are wasted every year in lost productivity
as people wait for Web pages to perform
duties that could have been handled bet-
ter by a 1984 Macintosh-style graphical
user interface application (www.useit.
com/jakob).”

New Hope
 It’s never enough to score a victory
simply by recognizing a strength in your
opponent’s argument and turning this
to your advantage, for soon they will do
likewise. The strength of the server is that
it provides a single way to administer
the client applications and HTML is a
ubiquitous GUI format that can be read on

almost every operating system. The force
pushed the client to invent a way to have
a full-fledged user interface that could be
updated centrally by the server. Java Web
Start now offers this. Although applets suf-
fered problems in their initial incarnations,
improvements made in 1.4 and beyond
now mean they are a viable way to deliver
a fully functioning Java GUI via a browser.
Java’s mantra of “write once, run any-
where” suits those wishing to write a GUI
that can be delivered across a wide variety
of platforms, and Swing improvements in
the past few years now mean that it offers
a high function point that couples good
platform fidelity with a set of powerful
frameworks. For those wishing to program
in Java and enjoy native platform widgets
directly, SWT provides a very good toolkit.

The Client Strikes Back
 The problems that plagued early client/
server for deployment and homogeneity
with native appearance are solved. As the
Web folks realized once HTML’s glitz wore
off, more is required than just serving up
a fancy GUI. Application frameworks are
required and JDNC is a powerful technol-
ogy that provides a way to attach a Java
GUI to back-end data. JSR 273, which was
recently approved, promises to overhaul
the JavaBeans component model speci-
fication and allow tools builders to create
an easier and more powerful program-
ming experience. Web services were once
described to me as “HTML for non-car-
bon based life forms,” the inference being
that programs could send and receive
messages using the simplicity of HTTP
and the Web without needing a browser to
render the data for a user to interpret. As
more APIs from companies whose fame
arose through the browser become pub-
lished as Web services, the wealth of data
behind the Web can become consumed
by fully functioning Java client GUIs. It
seems ironic that the transport of data
over HTTP, the backbone that launched
the Web, might become the new model for
client/server, and Web services will propel
the next generation of rich GUIs. The force
is with us yet.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

The Return
of the Client

I

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

www.SYS-CON.com/JDJ48 June 2005

roperty files are frequently
used in systems built using
Java whether it’s a thick Java
client, a servlet, or a business

component. Java specifies the format
for a property file and provides the
Properties class to read from and
write to these files. However, Java is
silent on the aspects related to valida-
tions of a value entered in a property
file, providing room for errors to
creep into an application system.
How many times have you started to
debug a failure in an application only
to realize that it’s because of an incor-
rect value in a property file?
 The Properties Editor Framework
detailed in this article was developed
to solve the problem of managing
application properties. It provides a
convenient way to define a data type
for each property and have a com-
panion component in Swing to edit
the property value. The framework
can be used as a standalone tool or as
part of a user interface.
 One of the framework’s design
criteria was that it should work out
of a property file, i.e., no other files
or databases should be required for
managing the property file. This is
achieved by using certain meta-attri-
butes to describe the characteristics
of each property in the properties file.
These meta-attributes are embed-
ded along with each property in the
property file as comments (Any line,
in a property file, starting with ‘#’ is
considered a comment in Java).
 In this article, we’ll describe the
framework’s use, the concept of
meta-attributes, and the default set
of the attributes supported by the
framework. And then, we’ll explain
the framework’s design and how to
extend it to support a new property
data type.

Using the Property Editor Framework
 The first step in using the Property
Editor Framework is to decide on
the Parameter type of each property
in the properties file. Currently the
framework supports the types listed
in Table 1.
 The next step is to modify the
properties file and add the necessary
meta-attributes for each property.
Listing 1 shows a sample properties
file with meta-attributes.
 The final step is to set up the
environment for the Property Editor
Framework and invoke the Property
Editor Dialog to start updating the
property values. Figure 1 shows the
properties as rendered in the Property
editor Dialog.

Meta-Attributes Explained
 The basic meta-attributes speci-
fied by the framework for each prop-
erty are Parameter Type, Editable,
and Documentation. The Para-
meter Type represents the type of
a property. It’s used to render a
suitable component for editing
the property value. The table below
lists the components rendered for
the each of the possible values of
PARAMETER TYPE.

 The meta-attribute EDITABLE
indicates whether the user can edit
the value of a property. In the Prop-
erty Editor Dialog, only properties
that have a true value for EDITA-
BLE meta-attribute are displayed.
This lets the application developer
make certain attributes in a proper-
ty file not editable through the
dialog.
 The DOCUMENTATION meta-
attribute specifies the text (which
can be specified using HTML) that

Framework

by Swaminathan Natarajan,
David Bismut, and

Krishnakumar Pooloth

Properties
Editor Framework

P

David Bismut is a third-year

student at the École des Mines

in Nantes (EMN), a French

engineering school. He’s

specializing in information

management technologies.

He was part of InStep,

Infosys’s global internship

program in 2004.

david.bismut@gmail.com

Solving the problem of managing application properties

Swaminathan Natarajan is

a technical architect with

Infosys Technologies. His area

of expertise is Java, repository

technologies, and metadata

management.

swaminathan_n01@infosys.com

 Figure 1 Property editor dialog

 Figure 2 Class Diagram: Property Editor Framework Model

Parser

EditorFile Group Parameter

ParameterString

ParameterFile

ParameterSymbol

ParameterBoolean

49June 2005www.SYS-CON.com/JDJ

provides assistance to the end user
while editing any particular property.
In Figure 1, this documentation
is displayed below the JTable con-
taining the editable properties. As
HTML tags are accepted, the <A>
anchor tag can be used to provide
a link to more comprehensive
documentation.
 Apart from the basic meta-attri-
butes, there are two special meta-
attributes. First one, GROUP NAME,
is used to group related properties
together. In the Property Editor
Dialog, each property group is
displayed in a separate tab. This
could be used to group your at-
tributes into, say, ‘Basic’ and
‘Advanced.’ Note that this param-
eter shouldn’t be specified for each
property separately. Once a GROUP
NAME tag appears, all the param-
eters till the next GROUP NAME
tag are grouped together. Another
special meta-attribute is ALLOWED
VALUES, which is used in conjunc-
tion with the SYMBOL parameter
type. This lets you specify the list of
valid choices for a SYMBOL proper-

ty. These values should be separated
by commas.

Adding Meta-Attributes
 Now that we have a good idea about
meta-attributes, let’s walk through the
steps in adding them to the Property File.
Consider the following set of Properties.

LoggingEnabled

LoggingLevel

LogFile

DatabaseURI

DatabaseUser

DatabasePassword

Step 1: Decide the Grouping of the Properties
 In the example the properties
can be split into two groups based
on their purpose, Logging and
Database connection. Let’s call
these groups Logging and
Database.

#GROUPNAME = Database

GROUPNAME = Logging

Step 2: Decide on the Type for Each Property
 In the example above, the types
to be assigned to each property
are shown in Table 3.

Krishnakumar Pooloth is a

senior technical architect

with Infosys Technologies.

His areas of expertise include

object design, component

technology, Java, and

expert systems. He holds

a bachelor’s degree in

electronics and

communication from

Calicut University, India.

krishnakumarp@infosys.com

 Table 1 Supported property types

Parameter Type Description
STRING The property value can be any string

SYMBOL The property value can be one of a set of choices. The framework allows for
 specifying the acceptable values for this data type.

BOOLEAN The property value should be true or false. To be used with properties

 boolean in nature such as ‘enableLogging’

FILE The property value should be the full path to any file

DIRECTORY The property value should be the full path to any directory

Note: If there’s a property that doesn’t fit into these types, it can be set as STRING or the framework can be

extended to support the new property type.

www.SYS-CON.com/JDJ50 June 2005

Step 3: Add Meta-Attributes to Each Property
 The complete listing of this sample
is available for download along with
the source (see Listing 2).

Design of the Property Editor
Framework
 In this section, we will detail
the design of the Properties Editor

Framework. To reduce complexity,
we’ll break the discussion into:
Creating the model of the Proper-
ties Editor component, creating
the UI of the Properties Editor
component, and the framework’s
persistence mechanism for the
properties file.

Creating the Model
 The classes involved in reading
the properties file into memory
and creating the data model are
depicted in Figure 2.
 The EditorFile class, which ex-
tends the File class, is used as a
thin wrapper for the Properties file.
The EditorFile class provides the fa-
cility to add an Observer, which will
be notified when changes are made
to the property values.
 The Parser class is a simple
 line parser that reads data from
the EditorFile instance line-by-line
and creates an in-memory model
of the property file. It also defines
the regular expression patterns to
match the different meta-attributes
supported by the framework. This
class creates a new instance of Group
class each time the meta-attribute
‘#GROUP NAME = <Group Name>’ is
encountered.
 For each property key-value that
falls under the same #GROUP NAME,
an instance of one of the sub-classes
of the Parameter class hierarchy is
created. The exact sub-class is de-
cided by the value of the meta-attri-
bute #PARAMETER TYPE, which also
keeps track of the value of meta-at-

tribute EDITABLE that’s used later by
the view to decide whether to make it
visible.

Creating the User Interface
 The classes involved in rendering
the user interface of the component
are depicted Figure 3.
 Referring to Figure 1, the visual
area of the dialog is split between
the Panel used to render the table
of property key-value pairs and
the JEditorPane showing the
documen-tation text of different
properties.
 The PropertyEditorDialog class
is responsible for a big part of the
work involved in creating the user
interface for the component. As the
name suggests, it extends JDialog; it
also implements the Observer and
ListSelectionListener interfaces.
The Observer interface is implement-
ed to change the title of the dialog
when any of the property value is
changed.
 The PropertyEditorDialog obtains
the number of groups of property
key-values in the EditorFile and
creates an equal number of JTables
to render them. These JTables are,
in turn, put in a JTabbedPane, one
tab for each group, the tab’s title cor-
responding to the group name. The
PropertyEditorDialog attaches itself
as the ListSelectionListeners for
all the Jtables. The PropertyEditor-
Dialog gets the description text for
the property on the valueChanged
event and displays it on the descrip-
tion JEdtiorPane.
 Finally, let’s look at the render-
ing and editing mechanisms for the
Property Key-Value pairs.
 The toVisual method of the
Group creates the EditorTable and
the TableModel for the EditorTable.
The EditorTable, in turn, creates
and sets an instance of the Editor-
TableCellRenderer as the cell ren-
derer and an instance of the Edi-
torTableCellEditor as the cell edi-
tor for the columns of the Editor-
Table.
 The EditorTableCellRenderer and
EditorTableCellEditor create the
controls necessary to render and edit
the property values. The different
controls for each Property type are
listed in Table 4.

Framework

 Figure 3 Class Diagram: Property Editor Framework User Interface

Group

onVisual() :void

EditorFile

JEditorPane

JTabbedPane
EditorTable

JTable

PropertyEditorDialog

PropertyEditorDialog() :void

EditorTableCellRenderer

ColumnRenderer

ColumnEditor
EditorTableCellEditor

ParameterString

ParameterFile

ParameterSymbol

ParameterBoolean

SectionListener

 Table 2 Property types and edit controls

Parameter Type Edit Control
STRING Text Control

SYMBOL Combo box (shows the
 list of allowed values)

BOOLEAN Combo box
 (with True or False)’

DIRECTORY Text control + Dir selector

FILE Text control + File selector

 Table 3 Properties and the corresponding data types for the

sample case

Property Property Type
LoggingEnabled BOOLEAN

LoggingLevel SYMBOL (debug | warning |error)

LogFile FILE

DatabaseURL STRING

DatabaseUser STRING

DatabasePassword STRING

Property Type Control
STRING FormattedTextField

SYMBOL FormattedComboBox

BOOLEAN FormattedComboBox (With just
 True and False)
FILE FormattedFileChooser

 Table 4 Property types and corresponding visual components

51June 2005www.SYS-CON.com/JDJ

 EditorTableCellEditor adds an
anonymous inner class to each
control overriding the functionality
for updating the controls to include
actions to set the new value back
to the model and invalidate the
model.

Persisting the Properties
 Writing the Property key-values
back to the Properties File is pretty
straightforward. A BufferedWriter is
created with the instance of Editor-
File as the FileWriter. The Parameters
are written group-by-group into this
file. Concatenating the text form
of each instance of the Parameter
hierarchy creates each group.

Extending the Framework To Add
New Type and Controls
 Now we’ll discuss adding a new type
for a property and the corresponding
control to edit the property’s value.
Say your application uses JDBC to
connect to a database and you want
to give the user the ability to specify

the JDBC driver to use via a property.
The framework, by default, doesn’t
support the required type, which lets
you choose a valid driver from a list.
We’ll see how to extend the framework
to add this new type.
 To display all the JDBC drivers we
could use a dropdown list with all
the JDBC drivers in the classpath.
Let’s name the new parameter type
JDBCDRIVER.
 For the new type, we’d need to de-
fine a new class on the model side,
say, ParameterJDBCDriver, which
is a sub-class of the ParameterSym-
bol class. The new class needs to
implement the method “toText”
that should return the driver’s fully
qualified class name. The following
code snippet does just that:

public class ParameterJDBCDriver extends

ParameterSymbol {

String strBaseClassName;

…

public ParameterJDBCDriver(String name,

String value, String baseClassName, bool-

ean editable, String doc) {

Driver[] driversInClasspath = ClassUtils.

findAllDriversInClasspath(baseClassName);

…

setAllowedValues(driverNames);

type = “JDBCDRIVER”;

}

 public String toText(){

String newLine = System.getProperty(“line.

separator”);

 return toTextType() + newLine +

toTextValue();

}

}

 Now we need to add the following
code to the createParameter method
of the Parser class. It creates an in-
stance of ParameterJDBCDriver when
the Parameter type “JDBC-DRIVER” is
encountered in the properties file.

if (pType.compareToIgnoreCase(“JDBCDRIVER”)

== 0) {

p = new ParameterJDBCDriver(pName, pValue,

pBaseClass,pEdit, pDoc);

}

�����������������������������������
����������������������

�������������������������

�������������������������

�����������������������

��

��������������������������

�������������

�������������������

���������������������������������� ��
��

�����������������������������

�����������������

�������������

www.SYS-CON.com/JDJ52 June 2005

 This completes the changes needed
on the model. On the view front, since
we have decided to show the values in a
drop down list, we can reuse the combo
box control used to display values of
type Symbol/Boolean. But we have to
make changes in a couple of classes to
ensure that the dropdown list is correctly
rendered for the new Property type.
 The following code needs to be add-
ed to the createComponent method of
the EditorTableCellRenderer class. It
will render the FormattedComboBox
control for the new Property type.

else if (cellValue instanceof

ParameterJDBCDriver) {

 o = new FormattedComboBox(cellValue,

((ParameterJDBCDriver) cellValue).getAl-

lowedValues(), value.toString()) {

 public void itemStateChanged(ItemEvent e)

{

 }

};

}

 Now we need to add the following
code to the createComponent method
of EditorTableCellEditor class to
ensure that editing changes are re-
flected correctly.

else if (cellValue instanceof

ParameterJDBCDriver) {

o = new FormattedComboBox(cellValue,

((ParameterJDBCDriver) cellValue).getAl-

lowedValues(), value.toString()) {

 public void itemStateChanged(ItemEvent e)

{

((ParameterJDBCDriver) cellValue).setValue(

getSelectedItem().toString());

 PropEditor.eFile.setModified(true);

 }

};

}

 The last step is to compile all the
changes and we’re good to go! You can
fire up the PropertyEditor Dialog and
verify that it works.

Adding a New Meta-Attribute
 In some cases, you might need
to add one or more custom attri-
butes to handle a new type properly.
Say, in the previous example, we
wanted to build the ability to store
the name of the base class (for the
JDBC driver this would be java.sql.
Driver) whose subclasses we want
to select from. It would make the
new control more generic. To imple-
ment it, we would need to add a
new meta-attribute specific to this
type, say, BASECLASS. To enable
the framework to parse this new
meta-attribute, you’d need to add
a new regular expression pattern to
the Parser class that matches the
newly defined meta-attribute
and then write the required pro-
cessing so this data is passed to the
constructor of the corresponding
Parameter class.

Conclusion
 Property files are frequently used
in Java-based applications so their
execution can be controlled exter-
nally. In this article we described
the design and use of a lightweight
framework for managing these prop-
erty files. The framework is easily
adoptable and allows for extensions.
However, we believe it can be made
even better. Java 1.5 supports the
XML format for specifying proper-
ties. Enabling this framework support
would ease the task of specifying
documentation attributes (currently
documentation need to be specified
in a single line). We hope you enjoy
working with this framework as much
as we did developing it.

References
• http://java.sun.com/j2se/1.5.0/
 docs/api/java/util/Properties.html
 - Read the documentation about
 the Properties class. It also speci-
 fies the format in which property
 file needs to be specified.

• http://java.sun.com/docs/
books/tutorial/uiswing/compo-
nents/tabbedpane.html - Read
the Java tutorial on how to use
JTabbedPane.

• http://java.sun.com/docs/books/
tutorial/uiswing/components/
table.html - Read the Java tutorial
on how to use JTable.

• http://www-106.ibm.com/
developerworks/java/library/j-
tiget02254.html - A more compre-
hensive read about the property
file XML format introduced in
Tiger.

• http://www.javaworld.com/java-
world/javatips/jw-javatip135.html
- This article discusses a layered
approach so that a large property
file can be split into manageable
smaller ones. It also introduces a
tool helpful in managing these lay-
ered property files.

• http://java.sun.com/docs/books/
tutorial/extra/regex - Read the Java
tutorial on how to work with regu-
lar expressions.

Framework

How many times have you started to debug a failure in an
application only to realize that it’s because of an

incorrect value in a property file?”
“

Listing 1: Properties File with meta-attributes

#GROUP NAME = General

#PARAMETER TYPE = DIRECTORY

#EDITABLE = true

#DOCUMENTATION = Help for directory

directory_param = C:\

Listing 2: Excerpt of the property file for the sample case

#GROUPNAME = Logging

#PARAMETER TYPE = BOOLEAN

#EDITABLE = true

#DOCUMENTATION = Decides whether to

log messages when application runs

LoggingEnabled = true

…

#GROUPNAME = Database

#PARAMETER TYPE = STRING

#EDITABLE = true

#DOCUMENTATION = Help for directory

DatabaseURI = valueofdatabaseuri

www.SYS-CON.com/JDJ54 June 2005

 The Star Trek universe has inspired many technology ideas

but I’m disappointed I don’t have a transporter yet. One Star

Trek technology that has been available for sometime is the

particle system. No, this is not an exotic propulsion system for

your fl ying car. The particle system was invented to animate

the Genesis effect in Star Trek II: The Wrath of Khan. While

the Genesis device was used to transform a barren planet into

one full of life, we can adopt this technology for more modest

effects in Java3D.

In the Beginning
 In previous articles, we’ve focused on creating plan-
etary surfaces with Java3D. One challenging area of
graphics programming is rendering irregular or ill-de-
fined objects like clouds, smoke, or fireworks. William
Reeves faced that challenge when Lucasfilm was asked to
create a planetary creation effect called the Genesis effect
for Star Trek II: Wrath of Khan. The idea was that a planet
would be hit with a missile that would transform it from
a barren wasteland into one full of life. Explosions and
flames on a planetary scale gave birth to a new form of
animation called a particle system.
 Reeves’ original paper (see references) describes a
particle system as one defined by clouds of primitive
particles or points in three dimensions. These particles
change and move with time making a particle system
dynamic. How a particle changes or moves is based on
a controlled stochastic process giving it a natural look.
How particles evolve in a particle system is called the
particle life cycle.
 Your morning shower is just like a particle system.
Particles are born and emitted by the system. Where the
particles are born and where they are headed is assigned
by the particle system. Your plumbing system determines
the water temperature and velocity of the droplets.
Particles exist and change under the influence of external

forces. The room temperature and gravity affect how the
water changes temperature and where it collides with you
or the tub. So where does that fancy stochastic process
come into play? To make the rate of particle emission,
ejection angle, velocity, or any other attribute more
interesting we need to vary them in slightly unpredict-
able ways. Reeves described the approach of adding a
randomly selected variance to the central value of an
attribute:

Attribute = CentralAttibuteValue + Random() * AttributeVariance

 This approach can be applied to just about any attribute of
the particle or the particle system. Figure 1 provides a simple
example. The particle system evolves over time by repeating
a series of steps and varying the attributes along the way. The
steps are:
1. New particles are initialized and emitted using varying

attributes.
2. Particles past their life expectancy die and are removed.
3. Surviving particles are updated based on external forces,

velocity, etc.
4. The particles are rendered.

 This cycle is repeated until the particle system has no more
particles or lives beyond its lifetime. That’s all you need to
know to get started building a particle system, so let’s build
one for Java3D.

Mike Jacobs is a mild-mannered

technical architect by day and

recreational programmer by

night. Mike works at the Mayo

Clinic. Please provide feedback

and guidance for future JDJ
articles to mnjacobs.java-

developersjournal.com.

mnjacobs.javadevelopers-
journal.com

Copyright 2005 © Mayo Foundation for
Medical Education and Research

by Mike Jacobs

Star Trek Technology
 for

Building a particle system for Java3D

Feature

Figure 1 Particle systems emit particles based on a creation area and randomly

varying attributes such as location, ejection angle, and velocity.

Java3D

55June 2005www.SYS-CON.com/JDJ

Transporting to Java3D
 Before we build the particle system in Java3D, let’s
lay out the objectives. First of all, the particle system
should be easy to add to the scene graph just like any
other Java3D shape. We should allow the Java3D Trans-
formGroup to be used to position and orient the particle
system. The design should allow us to use anything from
pixels to Shade3D objects for our particles. The particles
should be emitted from a variety of nozzle shapes and
be affected by external forces like wind or gravity. These
objectives should give us the flexibility to graduate from
simple water fountain particle systems to tornado simula-
tions. Before we jump straight into an F5 tornado, let’s get
a simple spray working.
 Figure 2 is a subset of a design that satisfies our particle
system objectives. It’s probably easiest to describe it from
the bottom up so let’s start with the Particle object. This
obviously represents a particle in the particle system and
logically maintains its position, velocity, and acceleration.
I used the word “logically” because I am fibbing a bit to
make it easier to describe. A ParticleEmitter object emits
particles and controls the movement of the particles as
you might expect. The particle emitter delegates the initial
position of particles to a GenerationShape object. During
the animation cycle, ExternalInfluence objects such as
Gravity affect the particles. All of these objects are inde-
pendent of Java3D so they could be used in other environ-
ments as well. Now I’m going to fess up about the particle
location. The location of a particle is actually maintained
by the particle emitter. This is done so that the locations of
all particles can be shared in one array for use in a Java3D
specific Shape3D implementation of a particle system.

Do You Have a Point, Spock?
So far we have satisfi ed just a few of our objectives. Let’s

use the particle emitter to make a single Shape3D particle
system. We can do this by making ParticleSystem a subclass
of the Shape3D class and using a PointArray for the geom-
etry. Luckily for us, the particle emitter has a fl oat array of
particle locations that will fi t nicely into a PointArray. This
geometry class is about the simplest supported by Java3D,
accepting a fl oat value for each x, y and z location of the
point. The geometry needs to change as the particles move
so this means that this particle system should implement
the GeometryUpdater interface. If you’re not familiar with
how to change the geometry of a Java3D shape during
runtime, refer back to my previous article (“Casting Perlin’s
Movie Magic in Java3D” [JDJ, Vol. 10, issue 3]) for an over-
view. The last piece of the design is the ParticleSystemMan-
ager that is responsible for notifying the particle systems
to run through their life-cycle steps. Before we dig into
the details of how it works, have a look at two of the ex-
amples included in the source code and shown in Figure
3. (The source code can be downloaded from www.jdj.
sys-con.com.)
 The particle system is created in Listing 1. The particle
emitter is created with a point generation shape having a
spread angle of 45 degrees, and specific central and vari-
ance values for emission rate, initial velocity, and particle
lifetime. We fade the particles by adding the FadePoint
influence to the particle emitter (one of many influence
objects included in the source code). This influence

Figure 2 A partial UML design diagram of the particle system for Java3D

Figure 3 A point generation shape is used with a particle emitter to spray green particles. The particles on the right

are emitted with motion blur.

Building a particle system for Java3D

www.SYS-CON.com/JDJ56 June 2005

gradually changes the transparency of the particle as it
ages. Now the particle system is created with the emitter
and a green particle color. Adding the particle system to
the scene graph is not shown due to space constraints,
but it’s added just like any other Java3D shape. Finally the
particle system manager is added to the scene graph and
the animation begins.
 The ParticleSystemManager is a Java3D behavior that
notifies all active particle systems after a specified time
has elapsed. I covered behaviors and their use in anima-
tion in my previous article so refer back to it if you need
a refresher. This implementation uses a combination of
elapsed frames and time to create a stable animation cycle.
The particle system manager starts and maintains the
Reeves particle system life cycle.

Emit New Particles
 The particle system manager notifies the particle sys-
tem that enough time has elapsed. This time is typically
less than 50 milliseconds. The emitter determines how
many particles need to be initialized and emitted based
on the emission rate, emission rate variance, and the
amount of time since the last notification. The speed of
the particles is initialized based on the velocity and veloc-
ity variance while the generation shape determines the
initial location. The generation shapes in the source code
include point, line, disk, and radial shapes. Particles are
assigned a lifetime using the same central value plus the
variance approach used for other attributes.

Bury the Dead Particles
 During the previous cycle, particles were aged based
on the elapsed time. Now the particles that have exceed-
ed their lifetime are collected and recycled for future
emissions.

Update the Surviving Particles
 The remaining particles are aged, changed by any
external influences, moved, scaled, and rotated. Aging
simply increments the age of the particle based on
the elapsed time. External influences can affect visual
characteristics such as color or transparency, or physi-
cal attributes such as scale, acceleration, velocity, or
position. Updating physical attributes does involve a bit
of physics, but hopefully it hasn’t been too long since
your last physics class.
 As part of applying the influences, the accelerations are
accumulated from each influence. For example, there

may be a Gravity and Wind influence affecting the par-
ticles. Gravity would obviously apply a downward accel-
eration while wind would apply a horizontal acceleration.
These accelerations and the existing velocity and position
are used to move the particle. The particle is moved in the
following method:

public void move(float dt) {

 float[] position = getLocalPosition();

 Vector3f v = getLocalVelocity();

 Vector3f a = getLocalAcceleration();

 v.scaleAdd(dt, a, v);

 // Scale add not used with position

 // to reduce number of objects created.

 float x = position[0] + vx * dt;

 float y = position[1] + vy * dt;

 float z = position[2] + vz * dt;

 setLocalPosition(x, y, z);

}

 This implementation uses Euler’s approach to numeric
integration. This approach works for us provided the time
differential (dt) between frames is small. The ParticleSys-
temManager controls the elapsed time so we can ensure
the time differential is small. Other approaches to numeric
integration such as Modified Euler, Heun, or Runge-Kutta
could be used if we needed more accuracy for our particle
simulation.

Feature

 Figure 5 About 200 Shape3D particles can be used to create fantastic particle systems like this tornado.

 Figure 4 Point particles can be motion blurred with a line having a varying transparency.

The particles are moving to the right in this figure.

www.SYS-CON.com/JDJ58 June 2005

Feature

 Because we are currently dealing with point particles,
we’ll skip scaling and rotation for now since these make
little sense for points.

Render the Particles
 This step is trivial in Java3D because the previous
step changed the location of the points representing the
particles. The previous step updated the geometry of
the particle system shape using the GeometryUpdater
interface and Java3D renders the new positions for us. As

the particle system life cycle evolves, the position of the
particles changes, creating the animation. Because we are
dealing with points, some simulations can be disorienting
unless we introduce motion blur.

It’s All a Blur
 You’ve probably seen motion blur when the Enterprise
goes to light speed. Motion blur on film can occur when
the subject moves quickly while the camera shutter is
open. While you probably don’t want the blur when taking
photographs, motion blur makes animation look more
lifelike and increases the perceived frame rate. How can
we take our particle system to the next level and add mo-
tion blur?
 Remember that each cycle of the particle system life
cycle is repeated after a very short elapsed time. If we treat
the elapsed time as an open camera shutter, then we want
to blur the particle movement during this elapsed time.
During the elapsed time, the particle moves from one
location to the next. If a line segment is used instead of a
point, we can connect the previous location with the new
location and vary the transparency of the line to create the
blur as depicted in Figure 4.
 The MotionBlurredParticleSystem implements motion
blurred points using the Java3D LineArray geometry ar-
ray class. The ParticleEmitter supports both the previous
and current location of the particle, enabling the particle
system to use this information to create the line seg-
ments. The blurring is accomplished by assigning colors
to the end points of the lines with different alpha values.
The current location has a fully opaque alpha value while
the previous location has a fully transparent alpha value.
Java3D takes care of smoothly interpolating the transpar-
ency of the line, conveniently creating the motion blur
for us.

Light Speed, Mr. Sulu!
 Using points and motion-blurred lines for particles in
Java3D performs very well. Several thousand particles can
be used simultaneously on modest hardware with reason-
able performance. I pushed my antiquated one-gigahertz
machine to run three motion-blurred particle systems
consisting of 8635 particles, gravity, and particle bounc-
ing at 14 frames per second. The 14 frames per second is
not stellar; it looks terrific with the blurring. Clearly the
advantage of using points or lines is that they are fast and
allow the use of thousands of particles. The disadvantage

What is a Quaternion?

a) A resident of the planet Quatern

b) A rogue protein responsible for Bad Programmers Disease

c) A mathematical representation of the rotational position of rigid bodies

d) An elementary particle found in high energy collisions of animated

 characters

Answer: c. Invented by Sir William Rowan Hamilton in 1845.

Quaternions are supported by Java3D, but barely documented.

Pop Quiz Hot Shot

 Figure 6 The UML design diagram to support shapes as particles

 Figure 7 A quaternion can be easily converted from Euler angles and is ideal for spinning objects

59June 2005www.SYS-CON.com/JDJ

to using points or lines is the lack of scale. Each particle is
one pixel in size regardless of the distance from the view-
er. While you can change the pixel size of the particles via
the PointAttributes and LineAttributes, the particles are
still all the same size. Ideally our particles should have
scale and, for performance sake, reduce the need for a
large number of particles. An approach to solving these
issues is to make the particles full-blown Java3D shapes.
With this approach we can create fantastic effects like the
tornado shown in Figure 5.

We Need More Power, Scotty!
 Let’s extend our particle system design to incorporate
Shape3D particles. We still want to easily add the particle
system to the Java3D scene, and reuse as much of what
we’ve done up to this point. Recall that our particle
systems use an emitter to control the initial position
and velocity of the particles. The point and motion blurred
particle systems deal with pixel size particles so we’ll have
to create a new type of particle system to handle Java3D
shapes. So far, the particle systems have been Shape3D
objects, so how can particles be any Shape3D object?
Java3D supports the aggregation of shapes into a Group.
 As you can see from Figure 6, the Shape3DParticle-
System is a subclass of the Java3D Group class to allow
shapes to be grouped together into a particle system.
By implementing the IParticleSystem interface, the
Shape3DParticleSystem can use the particle emitter
unchanged. To help organize and control the shapes, the
shape particle system maintains a scene graph segment
for each shape in the particle system. Each shape has
a scene graph segment consisting of a branch group to
maintain membership in the particle system and a trans-
form group to control the location, scale, and rotation of
the shape.
 Because particles are born and die during the particle
system life cycle, shapes must be added and removed
from the scene during the animation. Java3D limits the
changes to the content of live scene graphs to branch
groups. Provided the group (the particle system) has the
ALLOW_CHILDREN_EXTEND and the ALLOW_CHIL-
DREN_WRITE capabilities set and the branch group has
the ALLOW_DETACH capability set, the branch group
and its children can be added or removed from the scene.
For our purposes, the only child of the branch group is
a transform group. The transform group maintains the
standard Java3D translation, scale, and rotation attri-
butes of its child shape in a Transform3D object. With this
structure in place, let’s briefly review the Reeves life cycle
for our new shape particle system.

Emit New Particles
 From Figure 6 you can see that the shape particle sys-
tem implements the IParticleLifeCycleListener interface.
The particle emitter notifies listeners as particles evolve
through their lifetime. This notification can be used to
create additional effects such as spawning additional
particle systems. Just before particles are emitted, the
aboutToEmit() method is called on the listener, passing a
list of particles to be emitted. The shape particle system

reflects the initial particle position in the transform group
and adds the branch group, transform group, and shape
to the scene.

Bury the Dead Particles
 When the particle emitter is ready to bury dead particles,
it notifies listeners of their impending demise by calling

 Figure 8 All objects in this scene are OrientedShape3D objects. Note the correct lighting

on the fake spheres.

www.SYS-CON.com/JDJ60 June 2005

Feature

the aboutToDie() method. The shape particle system takes
the news pretty well by removing the branch group for the
particles from the particle system, removing the shapes
from the scene. To reduce object creation, the shape,
transform group, and branch group are recycled for a future
reincarnation.

Update the Surviving Particles
 While particles are alive, the particle emitter applies
the influences and the particles are moved, scaled, and
rotated. After the particles have been updated by the
particle emitter, it notifies the listeners by calling the
updated() method. The shape particle system reflects the
new particle position, scale, and rotation in the transform
group. We discussed how linear acceleration and velocity
of a particle can affect its new position, but how about
rotation?

Slicker Than Euler
 Realistic rotation of Shape3D particles with Euler
angles can be mathematically intensive and computa-
tionally expensive. I’ll try to keep the math to a minimum
but if you are interested in the details, have a look at the
references. If you have read much about three-dimen-
sional graphics, you’ve probably already heard of Euler
angles. An example of Euler angles is the yaw, pitch, and
roll used to describe the orientation of an airplane. There
are a few problems with using Euler angles that make
them difficult to use for animation.
 The order in which Euler angle rotations are applied
can result in different orientations. While applying the
rotations, a degree of freedom can be lost to something
called a “gimbal lock”. Over the course of multiple rota-
tions, numeric corrections are often needed to keep the
rotational animation looking good. Too make matters
worse, it’s computationally expensive to interpolate
between orientations. Chris Hecker summed it up pretty
well: “It’s possible to prove that no three-scalar param-

eterization of 3D orientation exists that doesn’t suck,
for some suitably mathematically rigorous definition
of suck.” I did say that I would try to keep the math to
a minimum. While Euler angles are easy to understand,
we need something that overcomes the weaknesses of
using Euler angles for rotational animation. This is where
something called a quaternion can save the day (see the
sidebar: Pop Quiz Hot Shot).
 A quaternion is an extension to complex numbers
consisting of a vector and a scalar. There’s no use trying
to picture a quaternion because it exists in four-dimen-
sional space. In the spirit of keeping the math to a mini-
mum, let’s review the key features of quaternions. A unit
length quaternion is perfect for representing a rotational
orientation of an object. Java3D supports a unit quaterni-
on with the Quat4f class. As the name implies, it consists
of four floating-point numbers to make up the vector
and scalar components of the quaternion. It’s straightfor-
ward to convert Euler angles to a quaternion as shown in
Figure 7.
 Performing successive rotations with quaternions is as
easy as multiplying them together. When compared to the
traditional rotational matrix approach, quaternion mul-
tiplication (the details of which we won’t cover here) and
orientation interpolation is much more efficient, making
it ideal for animating our rotating particle shapes. To ani-
mate the rotation, we need to specify the angular velocity
in the vector portion of a quaternion. The angular veloc-
ity quaternion used to calculate the time differential of a
quaternion is shown in Figure 7. The time differential can
be used to interpolate quaternions, which helps us spin
objects. That was probably the world’s shortest descrip-
tion of quaternions, so be sure to review the references
if you need more detail. Let’s put this new knowledge to
work in our shape particle system.
 When shape particles are about to be emitted, the ori-
entation is assigned through the use of Euler angles. The
angular velocity is also assigned using the now familiar
central value and variance approach discussed above.
The orientation and angular velocity is converted into
quaternions by the particle. When the particle is updated,
the quaternion differential is calculated using the time
interval of the particle system manager as described in
Figure 7. Finally, the new orientation quaternion is set on
the Transform3D of the shape along with the new position
and scale and Java3D rotates the shape.

Vector3f translation = new Vector3f();

translation.set(aParticle.getLocalPosition());

aTransform3D.set(aParticle.getOrientation(),

 translation,

 aParticle.getScale());

 Quaternions are put to work in the ColorCubeParticle-
SystemExample example. This example uses the Java3D
ColorCube utility class for the rotating particles and
includes the Gravity and BounceShape influences. When
running the example, note how the spinning is affected by
the collision with the ground. There is a bit of physics at
work in the BounceShape influence to calculate the torque

 Figure 9 Ambient color or texture can be combined with material and texture transparencies to render a variety of

implicit surfaces.

61June 2005www.SYS-CON.com/JDJ

of the impact and the resulting spin. You can see that the
influences provide an extension point to begin adding
physical simulation aspects to the particle system. You
can add your own Java3D shape as a particle by creating a
factory and assigning it to the particle system as shown in
Listing 2.
 How about simulating some weather? Clouds as particles
would be a powerful tool for steam, smoke, and even a
tornado. However, You might be thinking, “But a cloud would
take thousands of particles!” All it takes is one particle with
just the right shape, an implicit shape to be precise.

Implicit Surfaces
 Java3D excels at rendering objects with distinct geom-
etries. How can we render difficult to describe electron
density fields, flames or clouds? Complex organic or
other vaguely defined objects can be rendered with an
approach called implicit surface modeling. This approach
is known by several names in the literature including
blobby molecules, metaballs, and soft objects. We’ll use
the term implicit surface because the shape of the object
is implicitly determined by a function such as a sphere or
ellipsoid. The implicit function is combined with other
attributes to create the resulting object. For example, a
spherical function can implicitly determine the shape of
a cloud without making the cloud look like a ball. Vaguely
defined objects like clouds cannot be defined with tri-
angles, but with a visual trick called a billboard as shown
in Figure 8.
 A billboard is a geometrically flat image whose orien-
tation is aligned with the view. You might know bill-
boards better as sprites from older computer games.
Games like Doom used eight different views for each
monster, showing the appropriate image on the billboard
based on the direction the monster was heading and
the direction the player was facing. You never saw the
edge of the image because the billboard was always ori-

ented along a vertical axis to face the player. Java3D
includes support for billboards with the Oriented-
Shape3D class.
 OrientedShape3D goes beyond the Doom-style sprites
to include any geometry with orientation about either
an axis or a point. You might consider using an axis-ori-
ented OrientedShape3D object if the user cannot move
above the object and look down on it. Doing so would
spoil the illusion since they would be able to see the
image on edge. For this article, we’ll use point-oriented
OrientedShape3D objects so that they face the user re-
gardless of the view position. We will use a flat geometry,
but through the use of textures, transparency, and vertex
normals, we’ll be able to give the oriented shapes the feel-
ing of depth.
 Our overall strategy to implement implicit surfaces
is to combine the material color and transparency with
an alpha-enabled texture on an OrientedShape3D object
as shown in Figure 9. The implicit surface is a sphere
and our flat geometry slice of the sphere is a circle. The
first texture is fully opaque within the sphere and fully
transparent outside of the sphere. The ambient material
color is combined with the MODULATE texture mode
and vertex normals to create the fake sphere. While the
geometry of the implicit surface is a flat QuadArray, the
vertex normals are based on the implicit sphere. You can
see from the rendered object that Java3D lights the flat
geometry as though it is a real sphere. While this may not
be a practical use of implicit surfaces, it does demon-
strate the effectiveness of the approach. By varying the
texture transparency based on the distance from the
center of the sphere, we can create a fuzzy ball as shown
in the second example. The final example uses the same
varying transparency with Perlin noise-based turbulence
texture to create a cloud.
 The source code includes the ImplicitSurface, Fake-
Sphere, FuzzyBall and CloudPuff classes to implement the
examples in Figure 9. The ImplicitSurface class extends
OrientedShape3D to support the others. The CloudPuff
class can be used to implement volumetric fog without
our particle system. Because these are all Java3D shapes,
they can be used as particles in our shape particle system
to create awesome special effects.

Implicit Surface Particles
 Implicit surface particles depend heavily on transpar-
ency and rendering these objects takes additional care.
Java3D logically renders our scene back to front based on
the position of the view. This means that visible distant ob-
jects are rendered first and the closest objects are rendered
last. This depth sorting ensures that the closer objects
properly obscure the more distant objects. Ordinarily
Java3D draws all of the opaque objects back to front, fol-
lowed by the transparent objects. The transparent objects
are not depth sorted and look incorrect when we use our
transparent particles. Java3D depth sorts transparent ob-
jects if we call the following method on the view object:

setTransparencySortingPolicy(View.TRANSPARENCY_SORT_GEOMETRY)

 Figure 10 Real-time flames are possible with the particle system.

www.SYS-CON.com/JDJ62 June 2005

Feature

Listing 1

ParticleEmitter pe = new ParticleEmitter(

 new PointGenerationShape(Math.PI/4),

 400, // emission rate

 50, // emission rate variance

 8.5f, // velocity

 2, // velocity variance

 3, // lifetime

 1, // lifetime variance

 1500 // emitter lifetime

);

pe.addInfluence(new FadePoint());

particleSystem = new PointParticleSystem(pe, new Color3f(0,1,0));

// Adding the particle system to the scene not shown here

// Add a behavior to manage the particle system animation

ParticleSystemManager manager = ParticleSystemManager.getCurrent();

manager.setSchedulingBounds(bounds);

objRoot.addChild(manager);

Listing 2

float rate = (float) Math.PI/2;

Vector3f particleRotationRate = new Vector3f(rate, rate, rate);

Vector3f particleRotationRateVariance =

 new Vector3f(rate/2, rate/3, rate/4);

ParticleEmitter pe = new ParticleEmitter(

 new DiskGenerationShape((float)Math.PI/8, 2.5f,

1.5f),

 4.3f, // emission rate

 1.2f, // emission rate variance

 22f, // velocity

 7f, // velocity variance

 particleRotationRate,

 particleRotationRateVariance,

 7.5f, // lifetime

 1.5f, // lifetime variance

 100 // emitter lifetime in seconds

);

pe.addInfluence(new Gravity());

pe.addInfluence(new BounceShape());

IShape3DFactory factory = new ColorCubeFactory();

Shape3DParticleSystem particleSystem =

 new Shape3DParticleSystem(pe, factory);

 Using this sorting policy correctly sorts transparent objects
back to front. Now we can use our implicit surface particles to
create more advanced examples.

Use Enough Dynamite There, Butch?
 The source code included with this article includes sev-
eral destructive examples worth mentioning. The tornado
in Figure 5 was accomplished with the combination of
three particle systems. The TornadoExample includes a
particle system for the swirling clouds, the twisting funnel,
and the resulting debris. Additional destruction is possible
with fire as shown in Figure 10.
 The FlamesExample combines the use of ridged fractal
noise and light-emitting particles to create a real-time fire.
The implicit surface particles are textured with a variety
of Perlin noise to create the flame. The particle system
shoots the particles straight up while shrinking the parti-
cles and making them more transparent as they age. Invis-
ible Phantom particles are used to move and dynamically

attenuate point lights to make the fire appear to flicker.
The BlackHoleExample sucks asteroids into a black abyss
by using the Attract influence. And finally, everything we
have done is demonstrated in the explosive finale shown
in Figure 11.
 The ExplosionExample combines most of the features
of our particle system into one example. The example
begins with a lit stick of dynamite next to large boulder.
The fuse burns as a motion blurred point particle system.
When the fuse is gone, the boulder explodes with dust,
spinning rocks, fire, smoke and lights combined to com-
plete the effect.

Acknowledgments
 I would like to thank Ben Moxon and Brad Myers for
reviewing this article. Star Trek is a registered trademark of
Paramount Pictures. Doom is a registered trademark of id
Software.

References
• Ebert, D.S.; Kenton Musgrave, F.; Peachey, D.; Perlin,

K.; and Worley, S. (2003). Texturing & Modeling: A
Procedural Approach. Morgan Kaufmann Publishers.

• Bobick, N. “Rotating Objects with Quaternions.” Game
Developer. February 1998. Also available at http://
www.gamasutra.com/.

• Hecker, C. “Physics – The Next Frontier.” Game
Developer. October/November 1996, December 1996/
January 1997, March 1997, and June 1997.

• Jacobs, M. “Casting Perlin’s Movie Magic in Java3D.”
JDJ, Vol. 10, issue 3.

• Lander, J. “Better 3D: The Writing Is on the Wall.” Game
Developer. March 1998.

• Lander, J. “The Ocean Spray in Your Face.” Game
Developer. July 1998.

• Reeves, W.T., “Particle Systems – A Technique for
Modeling a Class of Fuzzy Objects.” ACM Transactions
on Graphics, Vol. 2, No. 2. April 1983, Pages 91–108.

 Figure 11 Implicit surfaces and shapes can be used together to create explosions.

�������������������
����������������������������
��������������������������
�����������������������������
�����������������������������

������������������������

����������������������������
��������������������������������

� �

��
���
����������������������
��
���
���

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

��

�����
��������������������

���������������
����������������������

�������������������������

�
�������������������

����������
����������
�������������������

�����������
��
���
���
���������������������������������������
��
���������������������������������������

�����������

�����������

�����������������������
�����������������
���������������

�������������������

����������������������

��������������
������������

���������������������

�

����������
����������������
����������������

�������������������
�

TM

TM

������������

� ������������������������������
� �������� �������������������������������
� � ������������������������������
� � �����������������������

�

�� ������������������
��

�

�������������������
����������������������������
��������������������������
�����������������������������
�����������������������������

������������������������

����������������������������
��������������������������������

� �

��
���
����������������������
��
���
���

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

��

�����
��������������������

���������������
����������������������

�������������������������

�
�������������������

����������
����������
�������������������

�����������
��
���
���
���������������������������������������
��
���������������������������������������

�����������

�����������

�����������������������
�����������������
���������������

�������������������

����������������������

��������������
������������

���������������������

�

����������
����������������
����������������

�������������������
�

TM

TM

������������

� ������������������������������
� �������� �������������������������������
� � ������������������������������
� � �����������������������

�

�� ������������������
��

�

www.SYS-CON.com/JDJ64 June 2005

Labs

The hardest single part of
building a software system is

deciding precisely what to build. No
other part of the conceptual work is
so difficult as establishing the detailed
technical requirements…Therefore the
most important function that software
builders do for their clients is the itera-
tive extraction and refinement of the
product requirements.”

– Fred Brooks in No Silver Bullet
– Essence and Accident in Software

Engineering

 Experienced Java developers rec-
ognize that capturing and refining the
requirements is one of the most impor-
tant, yet difficult, parts of building a
software system. An iterative software
development process that incorporates
the right tools can facilitate effective
requirements management.

Product Background
 MKS added requirements manage-
ment to their software configuration
management (SCM) product offerings
with the recent release of Integrity Suite
2005. Although the enhancements to
Integrity Suite encompass more than
requirements management, this review
focuses on the extensions to support
requirements management since these
extensions are the distinguishing fea-
tures of the 2005 product.
 Rather than developing a require-
ments management tool from scratch,
or acquiring an existing product, MKS
incorporated new features into their
change management tool, Integrity
Manager. These features allow Integ-
rity Manager to collect and manage
requirements. In addition, Integrity
Manager can be used with Source In-
tegrity to link requirements with source
code files that are placed under version
control.

Product Architecture
 MKS Integrity Suite 2005 is a J2EE
application comprised of Integrity
Server and Integrity Client.
 Integrity Server manages the process
items and source code files that reside
on the server. It runs under an applica-
tion server packaged and installed
with the product. It uses FLEXlm as the
license manager.
 Integrity Client consists of three
logical pieces: Source Integrity, Integ-
rity Manager, and the Administration
Client. Source Integrity is the version
control interface, while Integrity Man-
ager facilitates process and workflow
management activities. Both Source
Integrity and Integrity Manager share
the same GUI. In a separate GUI, the
Administration Client allows an admin-
istrator to perform common adminis-
trative tasks on the Integrity Server.

Reviewed by
Michael Sayko

MKS Integrity
Suite 2005

“

Michael Sayko is a

software configuration

management consultant

based in Austin, Texas.

He is experienced with

the practice of software

configuration management

 from having served as a

configuration manager on

large, fast-paced software

projects.

mss@acm.org

410 Albert Street

Waterloo, ON

N2L 3V3 Canada

Phone: 800 265-2797

Fax: 519 884-8861

Web: www.mks.com

Dell Inspirion 8100, 1.2GHz Intel Pentium III

mobile, 512MB RAM, 40GB disk, Windows XP

Professional Service Pack 2

Server and Client: Windows NT/2000/XP,

Unix, Linux

Pricing: Pricing for 10 users of the MKS

Integrity Suite (including MKS Source

Integrity Enterprise, MKS Integrity Manager,

Integrity Server and MKS Requirements)

is $37,000

MKS

Test Platform

Specifications Platforms

Installation
 The Integrity Suite is distributed
on two CDs. Installing the software is
straightforward. For this evaluation,
I installed both the Integrity Server
and the Integrity Client on a 1.2GHz
Wintel Notebook computer with
512MB RAM. I installed the Integrity
Server using the embedded PointBase
database. I configured the Integrity
Server to use the flat file authentica-
tion scheme.
 In addition to the embedded
PointBase database, Integrity Server
is designed to work with Oracle, MS
SQL Server, and DB2 databases.
Integrity Server stores process item
data, including requirements, in
the database. When using one of
the supported commercial databases,
files checked in to Source Integrity
can also be stored in the database.
During the installation of Integrity
Server, the administrator needs to
decide where version controlled
files will be stored. If the database
option is not selected, files placed
under version control with Source
Integrity are stored on a file system
in Revision Control System (RCS)
format.

MKS Requirements 2005
 After installing the Integrity Suite,
I proceeded to start the requirements
management component. I soon real-
ized that the requirements manage-
ment component is really Integrity
Manager. MKS added the following
enhancements to Integrity Manager so
that it could be used as both a require-
ments management repository and
engine:
• Named issue relationships that link

one issue to another
• A relationship view to visualize how

issues are related

• Suspect links that control changes to
requirements

• Integration with Microsoft Word to
capture requirements defined in a
Word document

• Integration with Telelogic DOORS
to capture requirements defined
in a DOORS module

• A process template consisting
of five requirements-related
processes

 The process template, also called a
solution, is named MKS Requirements
2005. While the process template is not
required for requirements manage-
ment, MKS created this template so
their customers could visualize how
to use the enhancements in Integrity

Manager to manage requirements.
Although MKS describes the process
template as “an illustration of MKS
Integrity Suite’s requirements manage-
ment capabilities,” I suspect that cus-
tomers will want to use the template’s
contents to model their requirements
management process. Of course, cus-
tomers can modify the process items
defined by the template to address
their specific needs.

Using Issues to Manage Requirements
 To understand how requirements
are managed by MKS Requirements
2005, you need to recognize that
Integrity Manager uses issues to model
process items. Each issue consists
of fields that store data. An issue Figure 1 Requirements types in the Administration Client

 Figure 2 Relationship view

 Figure 3 Project management dashboard

65June 2005www.SYS-CON.com/JDJ

Labs

The hardest single part of
building a software system is

deciding precisely what to build. No
other part of the conceptual work is
so difficult as establishing the detailed
technical requirements…Therefore the
most important function that software
builders do for their clients is the itera-
tive extraction and refinement of the
product requirements.”

– Fred Brooks in No Silver Bullet
– Essence and Accident in Software

Engineering

 Experienced Java developers rec-
ognize that capturing and refining the
requirements is one of the most impor-
tant, yet difficult, parts of building a
software system. An iterative software
development process that incorporates
the right tools can facilitate effective
requirements management.

Product Background
 MKS added requirements manage-
ment to their software configuration
management (SCM) product offerings
with the recent release of Integrity Suite
2005. Although the enhancements to
Integrity Suite encompass more than
requirements management, this review
focuses on the extensions to support
requirements management since these
extensions are the distinguishing fea-
tures of the 2005 product.
 Rather than developing a require-
ments management tool from scratch,
or acquiring an existing product, MKS
incorporated new features into their
change management tool, Integrity
Manager. These features allow Integ-
rity Manager to collect and manage
requirements. In addition, Integrity
Manager can be used with Source In-
tegrity to link requirements with source
code files that are placed under version
control.

Product Architecture
 MKS Integrity Suite 2005 is a J2EE
application comprised of Integrity
Server and Integrity Client.
 Integrity Server manages the process
items and source code files that reside
on the server. It runs under an applica-
tion server packaged and installed
with the product. It uses FLEXlm as the
license manager.
 Integrity Client consists of three
logical pieces: Source Integrity, Integ-
rity Manager, and the Administration
Client. Source Integrity is the version
control interface, while Integrity Man-
ager facilitates process and workflow
management activities. Both Source
Integrity and Integrity Manager share
the same GUI. In a separate GUI, the
Administration Client allows an admin-
istrator to perform common adminis-
trative tasks on the Integrity Server.

Reviewed by
Michael Sayko

MKS Integrity
Suite 2005

“

Michael Sayko is a

software configuration

management consultant

based in Austin, Texas.

He is experienced with

the practice of software

configuration management

 from having served as a

configuration manager on

large, fast-paced software

projects.

mss@acm.org

410 Albert Street

Waterloo, ON

N2L 3V3 Canada

Phone: 800 265-2797

Fax: 519 884-8861

Web: www.mks.com

Dell Inspirion 8100, 1.2GHz Intel Pentium III

mobile, 512MB RAM, 40GB disk, Windows XP

Professional Service Pack 2

Server and Client: Windows NT/2000/XP,

Unix, Linux

Pricing: Pricing for 10 users of the MKS

Integrity Suite (including MKS Source

Integrity Enterprise, MKS Integrity Manager,

Integrity Server and MKS Requirements)

is $37,000

MKS

Test Platform

Specifications Platforms

Installation
 The Integrity Suite is distributed
on two CDs. Installing the software is
straightforward. For this evaluation,
I installed both the Integrity Server
and the Integrity Client on a 1.2GHz
Wintel Notebook computer with
512MB RAM. I installed the Integrity
Server using the embedded PointBase
database. I configured the Integrity
Server to use the flat file authentica-
tion scheme.
 In addition to the embedded
PointBase database, Integrity Server
is designed to work with Oracle, MS
SQL Server, and DB2 databases.
Integrity Server stores process item
data, including requirements, in
the database. When using one of
the supported commercial databases,
files checked in to Source Integrity
can also be stored in the database.
During the installation of Integrity
Server, the administrator needs to
decide where version controlled
files will be stored. If the database
option is not selected, files placed
under version control with Source
Integrity are stored on a file system
in Revision Control System (RCS)
format.

MKS Requirements 2005
 After installing the Integrity Suite,
I proceeded to start the requirements
management component. I soon real-
ized that the requirements manage-
ment component is really Integrity
Manager. MKS added the following
enhancements to Integrity Manager so
that it could be used as both a require-
ments management repository and
engine:
• Named issue relationships that link

one issue to another
• A relationship view to visualize how

issues are related

• Suspect links that control changes to
requirements

• Integration with Microsoft Word to
capture requirements defined in a
Word document

• Integration with Telelogic DOORS
to capture requirements defined
in a DOORS module

• A process template consisting
of five requirements-related
processes

 The process template, also called a
solution, is named MKS Requirements
2005. While the process template is not
required for requirements manage-
ment, MKS created this template so
their customers could visualize how
to use the enhancements in Integrity

Manager to manage requirements.
Although MKS describes the process
template as “an illustration of MKS
Integrity Suite’s requirements manage-
ment capabilities,” I suspect that cus-
tomers will want to use the template’s
contents to model their requirements
management process. Of course, cus-
tomers can modify the process items
defined by the template to address
their specific needs.

Using Issues to Manage Requirements
 To understand how requirements
are managed by MKS Requirements
2005, you need to recognize that
Integrity Manager uses issues to model
process items. Each issue consists
of fields that store data. An issue Figure 1 Requirements types in the Administration Client

 Figure 2 Relationship view

 Figure 3 Project management dashboard

www.SYS-CON.com/JDJ66 June 2005

transitions through a series of states to
model a process workflow. Each issue
is defined by its type. When a user
creates issues from a type, the user
can locate these issues with a query. A
user-defined query simply selects and
lists issues that meet certain criteria.
 An administrator defines fields,
states, and types using the Admin-
istration Client. A user then creates
an issue (i.e., an instance of a type)
and a query using Integrity Manager.
Requirements, features, and tasks are
examples of issues that can be man-
aged by Integrity Manager. Prior to the
release of Integrity Suite 2005, users of
Integrity Manager created issues, such
as change requests, to track software
development activities like fixing a
defect or adding an enhancement.
 After enhancing Integrity Manager
to support requirements manage-
ment, MKS developed the Require-
ments 2005 process template to model
requirements artifacts. The template
consists of seven types (Project,
Requirement, Source Document,
DOORS Module, Feature, Task, and
Test) that take advantage of the
enhancements to Integrity Manager.
Keep in mind that these types are
administrator defined, rather than a
base feature of Integrity Manager. For
this reason, they can be used as is or
modified through the Administration
Client. Figure 1 shows how to access
these types using the Administration
Client.

Tracking Requirements, Analyzing the
Impact of Changes, and Visualizing
Project Status
 The strength of MKS Requirements
2005 is the way in which it allows us-
ers to track requirements, analyze the
impact of the inevitable changes to
requirements, and visualize the status
of a project.
 When using the issues in the
process template, a requirement is
defined by features that are imple-
mented as tasks and then validated
through tests. Figure 2 depicts a chain
of relationships from requirements
to features to tasks. Although not
shown in this figure, change packages
link tasks to the source code files that
implement them. This is the premise
behind task based development. Each
check-in to the version control system

is associated with a fine-grained
development task. One benefit of task
based development is that builds of
the software application can be de-
scribed by the features implemented,
rather than just the source files modi-
fied. This makes the construction of
a software application meaningful
to a broader audience. Project manag-
ers, software testers, and end users
can identify the features and fixes
incorporated into every build of
the software application. MKS Re-
quirements 2005 extends task
based development to requirements
based development because it main-
tains relationships from requirements
to features to tasks to the versions
of source code files that implement
the requirements. Now every build
can also be described by the require-
ments that it implements.
 Advocates of agile software devel-
opment recognize that requirements
evolve from their inception to their
realization in working software. MKS
Requirements 2005 supports require-
ments changes through suspect links.
Suspect links are flags on relation-
ship fields that are triggered when a
requirement is changed. This allows
dependent features, tasks, and tests to
be marked as needing to be reviewed
for the impact of a requirements
change.
 Finally, MKS Requirements 2005 al-
lows team members to view the status
of project using a project management
dashboard. The dashboard is a real-
time view of project data that provides

for interactive drill down to details.
Figure 3 shows a project management
dashboard with project status graphs
and links to reports and queries.

Summary: Advantages of an
Integrated Requirements
Management Solution
 The manner in which MKS integrated
requirements management capabilities
into Integrity Manager demonstrates
the flexibility and extensibility of this
process modeling and workflow man-
agement tool. Requirements, features,
and tasks are managed like any other
issue (i.e., process item) stored in the
Integrity Manager database. One clear
benefit of building requirements man-
agement artifacts from issues is that
the artifacts can be linked to affected
source code files using change pack-
ages. No integration effort is required
to facilitate traceability of requirements
and change management from the
same repository.
 While the requirements manage-
ment components, workflows, and
process rules described in the product
documentation may appear to repre-
sent a rigid model, a closer look at the
process template shows otherwise.
The Integrity Manager documentation
contains detailed, but easy to follow
instructions for extending any Integrity
Manager component, including the
issues in the process template. By
following these instructions, the com-
ponents in the process template can be
tailored, in a straightforward manner,
using the Integrity Manager GUI.

Labs

Target Audience: All members of the software development team including software configuration

managers, developers, business analysts, and project managers.

Level: All levels, from beginner to expert.

Pros:

• No integration required. MKS Requirements 2005 is a complete and self-contained requirements

management solution because it’s built with the process modeling and workflow management

tool Integrity Manager. Contrast the approach followed by MKS to the model used by other tool

vendors. Other requirements management products must be integrated with a software configu-

ration management tool to provide traceability from requirements to source code.

• Facilitates requirements based development. Relationships coupled with change packages link

requirements to the source code files that implement them. This also provides the traceability

needed for audits, including software baseline audits.

Cons:

• First generation product. Even though MKS Requirements 2005 is built with the mature Integrity

Manager, potential enhancements will be identified as MKS Requirements 2005 is used in produc-

tion environments.

JDJ Product Snapshot

���� �����

��������������������
����������������������

��� ����
���������

��� �����������������������

���������������������������

�����������������������

����������������������������

����������������������

�������������������������

��������������

�������������������������������� ��������������������

��������������������������������������

�������������������
�����������������

���������������������������������
����������������� �����

���� �����

��������������������
����������������������

��� ����
���������

��� �����������������������

���������������������������

�����������������������

����������������������������

����������������������

�������������������������

��������������

�������������������������������� ��������������������

��������������������������������������

�������������������
�����������������

���������������������������������
����������������� �����

www.SYS-CON.com/JDJ68 June 2005

Labs

ava Technology completed its
10-year anniversary recently. Sun
announced that there are over 4
million developers using the Java
language, with thousands more

joining their ranks. While a small per-
centage of developers can be called
experts or skilled in the complete
software development life cycle, a
vast majority of them typically try to
understand the requirements handed
down to them and code to meet such
requirements. Most projects (about
60%) go above budget and time,
which places additional pressure
on the developers trying to deliver
an application. Coding standards,
thorough unit testing, best coding
practices – all take a back seat to the
primary goal of delivering some code
that meets functional requirements.
Software architects have long tried to
enforce a uniform coding and testing
practice on their teams. Now, with the
release of Jtest 7.0 from Parasoft, it’s
possible to deliver code that follows
best practices and is well unit tested.

Product Description
 Jtest is an automated Java code
analysis and unit test generation
product. It comes with over 500 cod-
ing standard rules built-in and also
provides a mechanism to correct over
200 of these violations automatically.
Rules can be customized without
coding, and user-defined rules can
also be created. It automatically
generates and executes JUnit tests
and allows users to extend these tests.
Jtest has been standardized on the
now ubiquitous Eclipse platform and
is available as a stand-alone and as
a plug-in to Eclipse. It’s available on

Windows, Linux, and Solaris plat-
forms. Jtest makes static code analy-
sis a breeze and it should be easy for
even beginners to analyze their code
for compliance to standards as well as
to generate unit tests.

Installation
 I downloaded and installed the
stand-alone version of the software,
which is available for download
from the Parasoft Web site after
going through a simple registration
process. A license key is e-mailed to
the provided address. Installation of
the software is straightforward and I
just went with the provided default
values. I had JDK 1.5 already available
on my machine. Jtest stand-alone
installs the entire Eclipse runtime
and associated files with it. Once you
install it, the first time you run the
product you can go to the preferences
under the Windows menu and put in
your license key information. You’re
now ready to go.

Jtest Usage and Benefits
 If you are familiar with Eclipse,
there is practically no learning curve.
You can switch perspectives, create
a Jtest project from existing source
folders, and be on your way. There
are also several example projects
available for newbies to learn how to
use Jtest. The Java, CVS, and debug
perspectives are all available as a
consequence of Jtest built on the
Eclipse platform. You can create
Jtest configurations that can then
be applied to a project to conduct
static code analysis. A subset of the
available 500 rules can be enabled
and custom rules can also be added

to a configuration. Figure 1 shows the
stand-alone version of Jtest 7.0 with
available examples.
 I perceived several benefits to
using Jtest. It prevents errors from
entering into your code in the first
place. For new software develop-
ment projects, code development
can be treated in a strict manner and
the coding process controlled to fol-
low established coding standards.
Applying coding standards is easy
with the over 500 built-in coding
standard rules that enforces code
design and construction.
 Issues associated with resources
like JDBC connections not be-
ing closed properly are eliminated
upfront. This ensures that denial of
service (internal and external denial)

Reviewed by Venkat
Jtest 7.0

J

Venkat is the chief technology

officer at Red Rabbit Software

where he leads the Business

and Technology Strategy, the

direction of the Red Rabbit

Software technology platform

and the Business Solutions. He

has over 13 years of experience

in distributed computing,

technology strategy, and

enterprise architectures. Venkat

has completed Ph.D. courses

in Interdisciplinary Studies

and has an MS in Aerospace

Engineering from the University

of Alabama, Tuscaloosa, and

B.Tech from The Indian Institute

of Technology, India.

venkat@sys-con.com

by Parasoft

With the release of Jtest 7.0 from Parasoft, it’s possible to deliver code
that follows best practices and is well unit tested”“

101 E. Huntington Drive

Monrovia, CA 91016

Web: www.parasoft.com

Phone: (888) 305-0041

E-mail: info@parasoft.com

JDK 1.4.2 and 1.5, HP Compaq nx9600, Windows

XP Professional with Service Pack 2, Pentium 4

@ 3.6 GHz, 1GB RAM, 80GB hard disk

Platforms: Windows, Linux, and Solaris

Pricing: Pricing starts at $3,495 for a single user,

machine-locked license.

Support: Online technical support; dedicated

technical support with a 1-800 number, 9:00 a.m.

to 5:00 pm., Monday through Friday; overall

Parasoft solution including testing process, test-

ing analysis, and professional services support.

Parasoft

Test Platform

Specifications

www.SYS-CON.com/JDJ70 June 2005

attacks that leverage the exposure of
object resources are eliminated. For
example, it’s possible for a poorly
written application to access your
applications and induce it to throw
an exception. This can leave a con-
nection open if you don’t close your
connection in a finally clause. This
scenario can be easily caught by one
of the built-in rules, and good coding
practices can be enforced.
 The unit testing features of Jtest are
exciting and are based on automa-

tion. Unit tests designed to break your
code are generated automatically. The
generated unit tests can run in batch
mode overnight on the server.
 The prebuilt Jtest configuration has
several rules such as avoiding empty
try/catch blocks, handling exceptions
and errors, and assignment within
condition blocks. There is the notion
of an object repository where you
can create complex structures. Jtest
can read this repository when it’s
generating tests. You can also extend
generated unit tests, automatically
insert assertions, as well as get reports
on the code coverage and metrics.
 The team configuration manager
(TCM) allows you to enable sharing
of a configuration across a team. You
can upload test results to TCM. When
a developer starts his or her IDE in the
morning he or she can see the nightly
batch test reports that were run on the
server.
 Last but not the least, the most
exciting of all available features in
Jtest 7.0 is test case sniffing. This is
the ability of Jtest to monitor JVM
execution and based on that create
functional tests. Currently, only JDK

1.4.x is supported. The API to hook
into the JVM has undergone a revision
from JVMPI to JVMTI and that could
possibly explain why Parasoft may
take some time to catch up on sniffing
the JVM under JDK 1.5.
 Jtest can send data from various
tests to the Parasoft Group Reporting
System (GRS). Based on the data sent
to GRS, the configuration of Jtest on
developer machines can be modified.
Project Management can use GRS
reports to allow them visibility on
overall project progress. GRS provides
trending over time, graphics, etc.

Summary
 Overall, Jtest 7.0 is definitely an
able ally in the software developer
camp. It can save a lot of effort in
unit testing as well as allow a team to
enforce and follow uniform coding
standards. For small projects, the
price can probably be a little steep. If
you have a large project with multiple
developers, I would definitely encour-
age using a code analysis tool and also
complement your unit testing efforts.
Parasoft’s Jtest definitely fits the bill in
that regard.

Labs

 Figure 1 Stand-alone version of Parasoft Jtest 7.0

Target Audience: Java developers, software
architects
Level: Beginner to advanced
Pros:
• Easy to use for all user levels
• Static code analysis is quite extensive
• Unit tests generated are of an excellent
 standard
• Integrate existing JUnit tests into Jtest
Cons:
• Integration only with Eclipse and not
 NetBeans
• Limited support for Java 5.0 (JDK 1.5)
• Sniffer functionality supported for JDK 1.4.x
 and JDK 1.5 JVMs

Snapshot

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 4

 Borland www.borland.com/jbuilder 831-431-1000 7

 ceTe Software www.dynamicpdf.com 800-631-5006 49

 ClearNova www.clearnova.com 877-223-8651 35

 Common Controls www.common-controls.com +49 (0) 6151/13 6 31-0 59

 DataDirect www.datadirect.com/jdj 800-876-3101 Cover IV

 EV1 Servers www.ev1servers.net 800-504-SURF 47

 Google www.google.com/jdj 650-253-0000 41

 InetSoft www.inetsoft.com/jdj 888-216-2353 29

 Information Storage & Security Journal www.issjournal.com 888-303-5282 69

 InterSystems www.intersystems.com/free8p 617-621-0600 13

 IT Solutions Guide www.sys-con.com/it 888-303-5282 71

 JadeLiquid Software www.webrenderer.com +61 3 6226 6274 31

 Java Developer’s Journal www.sys-con.com/jdj 888-303-5282 67

 JavaOne Conference www.java.sun.com/javaone/sf 866-382-7151 57

 Jinfonet www.jinfonet.com/jp6 301-838-5560 17

 M7 www.m7.com/power 866-770-9770 27

 Microsoft Visual Studio www.msdn.microsoft.com/visual Cover II, 15

 NCL www.nclt.com/jdj +353 1 6761144 45

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 55

 ODTUG Conference www.odtug.com/2005_conference_location.htm 888-627-7033 51

 Parasoft Corporation www.parasoft.com/jtest 888-305-0041 11

 Perforce www.perforce.com 510-864-7400 9

 Prolifics www.prolifics.com 800-675-5419 53

 ReportingEngines www.reportingengines.com 888-884-8665 21

 SleepyCat Software www.sleepycat.com/bdbje 510-597-2128 37

 Software FX www.softwarefx.com 800-392-4278 Cover III

 Synaptris www.intelliview.com/jdj 866-99IVIEW 25

 SYS-CON Publications www.sys-con.com/2001/sub.cfm 888-303-5282 73

 Visual Paradigm www.visual-paradigm.com 408-426-8212 33

 WebAppCabaret www.webappcabaret.com/jdj.jsp 866-256-7973 39

 Web Services Edge Fall 2005 www.sys-con.com/edge2005 201-802-3066 63

 Xythos www.xythos.com 888-4XYTHOS 43

www.SYS-CON.com/JDJ72 June 2005

his past month the JCP Executive
Committees met in Nice, France,
in concert with the TeleManage-
ment World conference, where

the worldwide telecommunications
industry gathered to address technical,
operating, and business issues related to
the back office systems that they use to
run their business with their networks
and services portfolios. These back office
systems are called Operation Support
Systems and Business Support Systems
(OSS/BSS), or OSS for short.
 My guest this month is Philippe
Lalande, head of the OSS through Java
Initiative at Sun. Philippe created and
drove the Java Specification Request
(JSR3) under the JCP, and founded the
OSS through Java Initiative, which he
continues to lead today. You’ll find it
interesting to learn directly from the
guy at the heart of it all how the level
of complexity of OSS systems is driven
down by an order of magnitude by Java
technology, the JCP, and Java.net, all of
which have been instrumental in re-
shaping an entire vertical industry seg-
ment, and in driving up these systems’
level of agility.

– Onno Kluyt, chair,
Java Community Process (JCP)

 The OSS/BSS market is worth
roughly $50 billion on its own, but
directly impacts half a trillion dollars
in operating costs. Owning an OSS is
actually what characterizes a service
provider. Traditional wireline opera-
tors own their networks, while MVNOs
or mobile virtual network operators
run their services on someone else’s
networks. But all service providers own
their OSS. It’s their tool to do business.
 Successfully running a communica-
tions service provider business today
requires simultaneously operating

large network infrastructures and
portfolio of services to cut operating
costs, bring new services to market
faster and drive customer satisfaction.
This exercise is heavily dependent
on software. Myriad applications are
deployed across very large scale IT
infrastructures to cover functional do-
mains such as network management,
service provisioning, fault correlation,
inventory management, service qual-
ity monitoring, order entry, billing,
or trouble ticketing. Business process
automation requires integrating all
these systems together, making sure
they share some common information
models across the OSS. Taken individu-
ally these applications aren’t really
exotic, and integrating any two of them
isn’t rocket science. But the devil’s in
the numbers.
 On average, a tier-one service pro-
vider runs 1,500 different applications.
Bell Canada runs 162 different billing
systems, and BT recently inventoried
3,000 OSS applications across the com-
pany. Some of them were developed
in-house, others were customized from
commercial off-the-shelf products, and
still others were inherited from mergers
and acquisitions. Some of them are
very modern, recently designed on the
latest software technologies; others are
over 20-years-old. All of them have to
run 24/7/365 because every minute
the network isn’t costs several millions
dollars. All of them have to deal in real-
time with thousands of nodes, millions
of customers, zillions of commercial
transactions (such as a single phone
call). If you’ve got the picture, welcome
to the OSS integration nightmare!
 This nightmare becomes hell with
the increased complexity and com-
petitive pressure that come with smart
devices, with the convergence of voice,

data, entertainment, and soon utility
computing. To support IP-based next-
generation networks, industry de-regu-
lation and other major telco trends,
service providers around the world are
embarking on multi-year endeavors
like Sprint’s so-called “transformation
journey,” British Telecom’s “21st century
network,” France Telecom’s “urbaniza-
tion,” and BellSouth’s “competitive
survival initiative.” The ultimate goal of
these strategic programs is to rationalize
the IT infrastructures, evolve to more
flexible component-based OSS systems,
harmonize security, user interfaces,
and other non functional features, and
reduce the market fragmentation that
results from decades of operating net-
work silos and services hard-coded into
the network elements, building bespoke
telco-specific IT platforms, and trying to
define standards that remained paper
specifications but never made it to real
implementation and adoption.

The OSS/J Approach
 The OSS/J Initiative was originally
founded by Cisco, Ericsson, Motorola,
NEC, Nokia, Nortel, Telcordia, and Sun
to fill the gaps in the OSS standardiza-
tion landscape and foster a market of
re-usable OSS components. To address
interoperability issues, it was decided
to focus on technology specific imple-
mentation, on mainstream enterprise
technologies, and on making the life of
developers easier and more exciting.
 Rather than attempting once again
to create the next-best-telco-specific
OSS integration middleware (there are
already approximately 400 of those
proprietary things polluting the indus-
try), OSS/J chose J2EE to provide the
underlying middleware and to share
the risk and the investment with other
industries.

JSR Watch

Philippe Lalande

OSS:
The Market Landscape

T

Philippe Lalande co-founded

and leads the OSS through

Java Initiative, and is on the

board of the TMF. At Sun,

he also created Java

Management eXtensions

technology (JMX) and is

a recognized expert in

applying Java and Web

Services technology to

create business value in the

areas of management and

telecommunications. In 2002

he received Sun’s Chairman

award for innovation. Prior

to joining Sun, Philippe

held technical and business

responsibilities at Alcatel.

Why the OSS industry can – for the first time ever –
produce open, implementable, and certifiable standards

� MX Developer’s Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

3-Pack
Pick any 3 of our
magazines and save
up to $21000

Pay only $99 for a
1 year subscription
plus a FREE CD
• 2 Year – $179.00
• Canada/Mexico – $189.00
• International – $199.00

6-Pack
Pick any 6 of our
magazines and save
up to $34000

Pay only $199 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $379.00
• Canada/Mexico – $399.00
• International – $449.00

9-Pack
Pick 9 of our
magazines and save
up to $27000

Pay only $399 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $699.00
• Canada/Mexico – $749.00
• International – $849.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

*WHILE SUPPILES LAST. OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON MEDIA

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $340 AND
RECEIVE UP TO 3 FREE CDs!*

� Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� JDJ
U.S. - Two Years (24) Cover: $144 You Pay: $99.99 / Save: $45 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $69.99 / Save: $12
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $89.99 / Save: $40
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� LinuxWorld Magazine
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

� PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

� WebSphere Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129.00 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189.00 / Save: $75
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

� 3-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 6-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 9-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

Pick a 3-Pack, a 6-Pack or a 9-Pack

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

CALL TODAY! 888-303-5282

� Information Storage + Security Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $39
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

� WLDJ
U.S. - Four Years (24) Cover: $240 You Pay: $99.99 / Save: $140 + FREE $198 CD
U.S. - Two Year (12) Cover: $120 You Pay: $49.99 / Save: $70
Can/Mex - Four Years (24) $240 You Pay: $99.99 / Save: $140 + FREE $198 CD
Can/Mex - Two Year (12) $120 You Pay: $69.99 / Save: $50
Int’l - Four Years (24) $240 You Pay: $120 / Save: $120 + FREE $198 CD
Int’l - Two Year (12) $120 You Pay: $79.99 / Save: $40

� Wireless Business & Technology
U.S. - Two Years (12) Cover: $120 You Pay: $49.00 / Save: $71 + FREE $198 CD
U.S. - One Year (6) Cover: $60 You Pay: $29.99 / Save: $30
Can/Mex - Two Years (12) $120 You Pay: $69.99 / Save: $51 + FREE $198 CD
Can/Mex - One Year (6) $60 You Pay: $49.99 / Save: $10
Int’l - Two Years (12) $120 You Pay: $99.99 / Save: $20 + FREE $198 CD
Int’l - One Year (6) $72 You Pay: $69.99 / Save: $2

� MX Developer’s Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

3-Pack
Pick any 3 of our
magazines and save
up to $21000

Pay only $99 for a
1 year subscription
plus a FREE CD
• 2 Year – $179.00
• Canada/Mexico – $189.00
• International – $199.00

6-Pack
Pick any 6 of our
magazines and save
up to $34000

Pay only $199 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $379.00
• Canada/Mexico – $399.00
• International – $449.00

9-Pack
Pick 9 of our
magazines and save
up to $27000

Pay only $399 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $699.00
• Canada/Mexico – $749.00
• International – $849.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

*WHILE SUPPILES LAST. OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON MEDIA

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $340 AND
RECEIVE UP TO 3 FREE CDs!*

� Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� JDJ
U.S. - Two Years (24) Cover: $144 You Pay: $99.99 / Save: $45 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $69.99 / Save: $12
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $89.99 / Save: $40
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� LinuxWorld Magazine
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

� PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

� WebSphere Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129.00 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189.00 / Save: $75
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

� 3-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 6-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 9-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

Pick a 3-Pack, a 6-Pack or a 9-Pack

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

CALL TODAY! 888-303-5282

� Information Storage + Security Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $39
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

� WLDJ
U.S. - Four Years (24) Cover: $240 You Pay: $99.99 / Save: $140 + FREE $198 CD
U.S. - Two Year (12) Cover: $120 You Pay: $49.99 / Save: $70
Can/Mex - Four Years (24) $240 You Pay: $99.99 / Save: $140 + FREE $198 CD
Can/Mex - Two Year (12) $120 You Pay: $69.99 / Save: $50
Int’l - Four Years (24) $240 You Pay: $120 / Save: $120 + FREE $198 CD
Int’l - Two Year (12) $120 You Pay: $79.99 / Save: $40

� Wireless Business & Technology
U.S. - Two Years (12) Cover: $120 You Pay: $49.00 / Save: $71 + FREE $198 CD
U.S. - One Year (6) Cover: $60 You Pay: $29.99 / Save: $30
Can/Mex - Two Years (12) $120 You Pay: $69.99 / Save: $51 + FREE $198 CD
Can/Mex - One Year (6) $60 You Pay: $49.99 / Save: $10
Int’l - Two Years (12) $120 You Pay: $99.99 / Save: $20 + FREE $198 CD
Int’l - One Year (6) $72 You Pay: $69.99 / Save: $2

www.SYS-CON.com/JDJ74 June 2005

 Being relieved by J2EE of most of
the typical framework issues, it was
then possible for the initiative to focus
exclusively on OSS functional APIs
that implement existing telco OSS
paper standards whenever possible
and run on any compliant J2EE appli-
cation servers. OSS/J has established
pull-push relationships with a number
of standards bodies, TeleManagement
Forum being the cornerstone of that
strategy. Rather than develop its own
standards or variants, OSS/J had some
of its members contribute resources to
accelerate completion of some tech-
nology-neutral standards like TMF
NGOSS and align with them.
 Then, because the APIs address
integration tax, interoperability, and
other non-differentiating common
pain points, we decided that each
API should come with free-of-charge,
near-production-ready implemen-
tation examples, as well as free-of-
charge conformance test suites.
Therefore, the next critical OSS/J
decision was to adopt the JCP as its
collaboration and process framework.
OSS/J actually decided to enforce
more demanding requirements above
and beyond the JCP legal framework
and created its own open collabora-
tion and governance model. This
enabled the initiative to impose active
participation and measurable con-
tributions from its members, create
a consistent family of APIs, factorize
design patterns across all APIs, and
control the overall roadmap. It par-
ticularly wanted to avoid the useless
proliferation of APIs that would be
too specific for certain functions or
network technologies.
 The APIs are verified with real
products, packaged, distributed, and
licensed under a harmonized licensing
and certification model that avoids
possible differences from one API and
spec lead to another. It also enables
the initiative to substitute specifica-
tion and maintenance leads when
needed.
 The initiative operates as a virtual
company, with its own steering and
decision processes and its own bud-
get, although it’s not a legal entity. The
governance model is open and public.
Interested readers can take a look at
the master agreement and the operat-
ing guide.

 Thanks to all these choices, OSS/J
delivers open standards that are abso-
lutely unique in the telecommunica-
tions industry:
• No other standard delivers publicly

available, free-of-charge, testable,
and certifiable implementations

• No other implementation solution is
an open standard

What We Learned?
 Recent OSS industry analyst reports
like the one from Dittberner claim the
middleware game is over. J2EE and
its OSS/J plug-in are heading towards
80% market share by 2008. The JCP has
absolutely delivered on its promises en-
abling the OSS industry for the first time
ever to produce open, implementable,
and certifiable standards. This process
framework, extended with OSS/J gover-
nance model and associated to the J2EE
design patterns practices, has helped us
scope and design the OSS/J technol-
ogy into a very small set of only 15 APIs
covering a very large portion of OSS’s
functional space, and at the same time
a broad spectrum of network technolo-
gies including wireline, wireless, broad-
band, and cable. The technology is now
deployed in production across the plan-
et, and the early adopters have achieved
tangible benefits; DSL provider Covad
recently said that it \completed an OSS
integration project in four months that
would have typically required two years
– and their second project was done in
two months.
 So, can we claim victory today?
 No. The network operators that have
been voicing their frustration over
incompatible interfaces for so long are
paradoxically moving carefully and
slowly. They were snake-bitten by the
promises of previous standards like Q3
and previous technologies like CORBA
that were too complex to implement
and too specific to the OSS niche. The
current business model with its 80% tax
for non-re-usable customization and
integration is the comfort zone of several
vendors and buyers as well. They believe
that by maintaining the status quo, they
will protect their short-term cash cow or
their personal piece of political power.
 But long-term, the industry simply
can’t afford to keep wasting 80% of its
investments. As the Yankee Group says,
adopting OSS/J to build the next-gen-
eration OSS is a matter of survival.

 So we still have some work to do, and
there are still many opportunities for
Java developers to surf the OSS/J wave.

What’s Next?
The OSS/J technology is now stable. The
initiative will complete the APIs now in
progress through the JCP, and for each
API will finalize the three integration
profiles needed to cover the typical inte-
gration scenarios needed in the industry
(JVT/EJB, XML/JMS, and XML/WS).
 The early adopters have confirmed
that the family of APIs is useful and
solid, and serve the purpose they were
designed for. The bet they made as the
first OSS/J adopters has been rewarded
by immediate and tangible benefits but
this is not enough to get the technology
rapidly embraced by the more conser-
vative masses. The people who don’t
have the time, resources, or skills to dive
into the standards and the technology
need an ecosystem of certified prod-
ucts, adapters, extensions, modeling,
development, and presentation tools
plus qualified training and consulting
services. The good news is that the same
rationale that led OSS/J to choose J2EE
at the beginning now leads to building
that ecosystem on top of mainstream
enterprise building blocks such as
portal servers, directory servers, identity
servers. And we believe this will bring
another order of magnitude of simplifi-
cation and cost savings to the industry.
 We have recently created a number
of OSS/J-related open source projects on
Java.net to ignite this ecosystem. If it’s
successful, many will consider the game
over, but I’m personally convinced that
the most exciting part is still to come
with the convergence of telco and the
enterprise. The day utility computing
services are sold like today’s commu-
nications services, the most successful
companies will run the most efficient
and flexible OSS systems. With OSS/J
and other Java management technolo-
gies such as JMX, Java developers have
a baseline from which to play a major
role in that evolution. We’ve created
a placeholder for service and business
management projects on Java.net, and
I’m soliciting your ideas and energy to
help turn this into a vibrant community.
If we can connect the dots between telco
OSS and enterprise service and business
management the opportunities are
unlimited.

JSR Watch

